楼主: SleepyTom
1965 5

[学术资料] R in a Nutshell 2nd Edition [推广有奖]

  • 3关注
  • 12粉丝

已卖:13769份资源

教授

26%

还不是VIP/贵宾

-

威望
0
论坛币
192616 个
通用积分
1879.5105
学术水平
134 点
热心指数
181 点
信用等级
154 点
经验
1591 点
帖子
788
精华
0
在线时间
453 小时
注册时间
2007-5-8
最后登录
2025-12-31

楼主
SleepyTom 发表于 2016-5-8 00:30:53 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
R in a Nutshell 2nd Edition By Joseph Adler

Publisher: O'Reilly Media
Final Release Date: September 2012
Pages: 724


If you’re considering R for statistical computing and data visualization, this book provides a quick and practical guide to just about everything you can do with the open source R language and software environment. You’ll learn how to write R functions and use R packages to help you prepare, visualize, and analyze data. Author Joseph Adler illustrates each process with a wealth of examples from medicine, business, and sports.

Updated for R 2.14 and 2.15, this second edition includes new and expanded chapters on R performance, the ggplot2 data visualization package, and parallel R computing with Hadoop.

  • Get started quickly with an R tutorial and hundreds of examples
  • Explore R syntax, objects, and other language details
  • Find thousands of user-contributed R packages online, including Bioconductor
  • Learn how to use R to prepare data for analysis
  • Visualize your data with R’s graphics, lattice, and ggplot2 packages
  • Use R to calculate statistical fests, fit models, and compute probability distributions
  • Speed up intensive computations by writing parallel R programs for Hadoop
  • Get a complete desktop reference to R

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:nutshell Edition editio dition Shell everything computing practical software provides

ri49fj.rar
下载链接: https://bbs.pinggu.org/a-2028830.html

10.53 MB

需要: 10 个论坛币  [购买]

本附件包括:

  • R in a Nutshell 2nd Edition by J. Adler.pdf

本帖被以下文库推荐

沙发
Lisrelchen(未真实交易用户) 发表于 2016-5-8 04:16:18
  1. Pasting Together Data Structures

  2. R provides several functions that allow you to paste together multiple data structures into a single structure.

  3. Paste

  4. The simplest of these functions is paste. The paste function allows you to concatenate multiple character vectors into a single vector. (If you concatenate a vector of another type, it will be coerced to a character vector first.)

  5. > x <- c("a", "b", "c", "d", "e")
  6. > y <- c("A", "B", "C", "D", "E")
  7. > paste(x,y)
  8. [1] "a A" "b B" "c C" "d D" "e E"
  9. By default, values are separated by a space; you can specify another separator (or none at all) with the sep argument:

  10. > paste(x, y, sep="-")
  11. [1] "a-A" "b-B" "c-C" "d-D" "e-E"
  12. If you would like all of values in the returned vector to be concatenated with one another (to return just a single value), then specify a value for the collapse argument. The value of collapse will be used as the separator in this value:

  13. > paste(x, y, sep="-", collapse="#")
  14. [1] "a-A#b-B#c-C#d-D#e-E"
复制代码

藤椅
Lisrelchen(未真实交易用户) 发表于 2016-5-8 04:18:06
  1. rbind and cbind

  2. Sometimes, you would like to bind together multiple data frames or matrices. You can do this with the rbind and cbind functions. The cbind function will combine objects by adding columns. You can picture this as combining two tables horizontally. As an example, let’s start with the data frame for the top five salaries in the NFL in 2008:[33]

  3. > top.5.salaries
  4.   name.last name.first     team position   salary
  5. 1   Manning     Peyton    Colts       QB 18700000
  6. 2     Brady        Tom Patriots       QB 14626720
  7. 3    Pepper     Julius Panthers       DE 14137500
  8. 4    Palmer     Carson  Bengals       QB 13980000
  9. 5   Manning        Eli   Giants       QB 12916666
  10. Now let’s create a new data frame with two more columns (a year and a rank):

  11. > year <- c(2008, 2008, 2008, 2008, 2008)
  12. > rank <- c(1, 2, 3, 4, 5)
  13. > more.cols <- data.frame(year, rank)
  14. > more.cols
  15.   year rank
  16. 1 2008    1
  17. 2 2008    2
  18. 3 2008    3
  19. 4 2008    4
  20. 5 2008    5
  21. Finally, let’s put together these two data frames:

  22. > cbind(top.5.salaries, more.cols)
  23.   name.last name.first     team position   salary year rank
  24. 1   Manning     Peyton    Colts       QB 18700000 2008    1
  25. 2     Brady        Tom Patriots       QB 14626720 2008    2
  26. 3    Pepper     Julius Panthers       DE 14137500 2008    3
  27. 4    Palmer     Carson  Bengals       QB 13980000 2008    4
  28. 5   Manning        Eli   Giants       QB 12916666 2008    5
  29. The rbind function will combine objects by adding rows. You can picture this as combining two tables vertically.

  30. As an example, suppose that you had a data frame with the top five salaries (as shown above) and a second data frame with the next three salaries:
复制代码

板凳
三鱼鱼(真实交易用户) 发表于 2016-5-8 08:43:06 来自手机
SleepyTom 发表于 2016-5-8 00:30
R in a Nutshell 2nd Edition By Joseph Adler

Publisher: O'Reilly Media
谢谢分享

报纸
Enthuse(未真实交易用户) 发表于 2016-6-10 06:46:52
thanks ...

地板
newfei188(未真实交易用户) 发表于 2016-11-13 01:09:15

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-31 16:17