楼主: igs816
3100 9

[其他] Learning Probabilistic Graphical Models in R [推广有奖]

已卖:261191份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1762583 个
通用积分
20526.7076
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3899 小时
注册时间
2007-8-6
最后登录
2025-12-8

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2016-5-14 14:49:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
4K4ZkP43g8BNTGheU3X4UFKVWf3PLyrQ.jpg

David Bellot, "Learning Probabilistic Graphical Models in R"
English | ISBN: 1784392057 | 2016 | EPUB/PDF(conv) | 250 pages |11.5 MB


Key Features
Predict and use a probabilistic graphical models (PGM) as an expert system
Comprehend how your computer can learn Bayesian modeling to solve real-world problems
Know how to prepare data and feed the models by using the appropriate algorithms from the appropriate R package
Book Description
Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models.

We'll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we'll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you'll see the advantage of going probabilistic when you want to do prediction.

Next, you'll master using R packages and implementing its techniques. Finally, you'll be presented with machine learning applications that have a direct impact in many fields. Here, we'll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems.

What you will learn
Understand the concepts of PGM and which type of PGM to use for which problem
Tune the model's parameters and explore new models automatically
Understand the basic principles of Bayesian models, from simple to advanced
Transform the old linear regression model into a powerful probabilistic model
Use standard industry models but with the power of PGM
Understand the advanced models used throughout today's industry
See how to compute posterior distribution with exact and approximate inference algorithms

Learning Probabilistic Graphical Models in R.rar (11.52 MB, 需要: 5 个论坛币) 本附件包括:
  • Learning Probabilistic Graphical Models in R.pdf
  • Learning Probabilistic Graphical Models in R.epub

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:graphical Learning earning GRAPHIC models computer English learn

已有 1 人评分经验 论坛币 收起 理由
fantuanxiaot + 66 + 66 精彩帖子

总评分: 经验 + 66  论坛币 + 66   查看全部评分

本帖被以下文库推荐

沙发
Nicolle(真实交易用户) 学生认证  发表于 2016-5-14 18:45:32
提示: 作者被禁止或删除 内容自动屏蔽

藤椅
jjxm20060807(真实交易用户) 发表于 2016-5-14 19:02:56
谢谢分享

板凳
nieqiang110(真实交易用户) 学生认证  发表于 2016-5-14 19:39:55
Learning Probabilistic Graphical Models in R

报纸
bailihongchen(真实交易用户) 发表于 2016-5-15 09:57:11
thanks for sharing

地板
书海溪流(真实交易用户) 发表于 2016-5-16 08:11:28
多谢分享,

7
peterlovejin(真实交易用户) 发表于 2016-11-5 11:43:18
good job! thanks for sharing!

8
sacromento(未真实交易用户) 学生认证  发表于 2016-11-5 11:53:36 来自手机
谢谢分享啊!

9
oliyiyi(真实交易用户) 发表于 2017-1-10 10:32:45
谢谢分享

10
universecn(真实交易用户) 发表于 2017-4-6 02:07:25 来自手机
igs816 发表于 2016-5-14 14:49
David Bellot, "Learning Probabilistic Graphical Models in R"
English | ISBN: 1784392057 | 2016  ...
thanks for sharing

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-9 06:28