楼主: ReneeBK
2030 5

[Lecture Notes]Advanced Data Analysis: Structural Equation Modeling [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.6937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2016-5-29 09:43:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Handouts and Overheads



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Structural Advanced Analysis equation Modeling available presented Matrix

已有 2 人评分学术水平 热心指数 信用等级 收起 理由
yuedragon + 2 精彩帖子
日新少年 + 1 + 1 + 1 精彩帖子

总评分: 学术水平 + 3  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

沙发
ReneeBK 发表于 2016-5-29 09:45:00

Multigroup Structural Model Example

  1. title: Multigroup structural model example--All parameters free ;
  2. data: file=C:\Jason\mplus\semclass\stack1.dat; format=11f1.0;
  3. listwise=on;
  4. variable: names = widow panas1 panas2 panas3 panas4 panas5
  5. panas6 panas7 panas8 panas9 panas10 ;
  6. grouping is widow (0=notwidow,1=widow);
  7. missing = blank;
  8. analysis: type=general; iterations = 200;
  9. model=nomeanstructure; information=expected;
  10. model:
  11. posaff by panas1-panas5*;
  12. posaff@1;
  13. negaff by panas6-panas10* ;
  14. negaff@1;
  15. ! Note: by default in Mplus, measurement errors and factor correlations are not
  16. ! constrained to be equal across groups;
  17. Model notwidow:
  18. posaff by panas1-panas5*;
  19. posaff@1;
  20. negaff by panas6-panas10* ;
  21. negaff@1;
  22. Model widow:
  23. posaff by panas1-panas5*;
  24. posaff@1;
  25. negaff by panas6-panas10* ;
  26. negaff@1;
复制代码
已有 1 人评分学术水平 热心指数 信用等级 收起 理由
日新少年 + 1 + 1 + 1 精彩帖子

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

藤椅
日新少年 学生认证  发表于 2016-5-29 09:46:46
谢楼主分享

板凳
ReneeBK 发表于 2016-5-29 09:51:10
Cross-lagged Panel Model of Positive and Negative Social Exchanges
  1. title: Cross-lag panel model of positive and negative exchanges;
  2. data: file=c:\jason\mplus\semclass\long1.dat; format=4f9.6;
  3. listwise=on;
  4. variable: names = pos posf neg negf;
  5. missing=blank;
  6. analysis: type=general;
  7. estimator=mlm;
  8. model: negf on neg pos;
  9. posf on neg pos;
  10. neg with pos;
  11. negf with posf;
  12. output: stdyx;
复制代码

报纸
ReneeBK 发表于 2016-5-29 09:52:31
Latent Variable Cross-lagged Panel Model of Positive and Negative Social Exchanges
  1. Without Correlated Errors Over Time
  2. title: Latent Cross-lag panel model of positive and negative exchanges;
  3. data: file=c:\jason\mplus\semclass\long2.dat; format=28f9.6;
  4. listwise=on;
  5. variable: names = trust emo info tang social comm se
  6. trustf emof infof tangf socialf commf sef
  7. ntrust nemo ninfo ntang nsocial ncomm nse
  8. ntrustf nemof ninfof ntangf nsocialf ncommf nsef;
  9. missing=blank;
  10. analysis: type=general;
  11. estimator=mlm;
  12. !model=nomeanstructure; information=expected;
  13. model: pos by trust (1)
  14. emo (2)
  15. info (3)
  16. tang (4)
  17. social (5)
  18. comm (6)
  19. se (7);
  20. posf by trustf (1)
  21. emof (2)
  22. infof (3)
  23. tangf (4)
  24. socialf (5)
  25. commf (6)
  26. sef (7);
  27. neg by ntrust (8)
  28. nemo (9)
  29. ninfo (10)
  30. ntang (11)
  31. nsocial (12)
  32. ncomm (13)
  33. nse (14);
  34. negf by ntrustf (8)
  35. nemof (9)
  36. ninfof (10)
  37. ntangf (11)
  38. nsocialf (12)
  39. ncommf (13)
  40. nsef (14);
  41. negf on neg pos;
  42. posf on neg pos;
  43. neg with pos;
  44. negf with posf;
  45. output: stdyx;
复制代码

地板
ReneeBK 发表于 2016-5-29 09:55:10
Latent Growth Curve Example
  1. title: Latent Growth Curve Model Example 1;
  2. data: file=c:\jason\mplus\semclass\growth1.dat; format=3f10.6;
  3. listwise=on;
  4. ! I'm using listwise deletion here, but one could argue that this
  5. ! may lead to biases due to attrition and therefore use FIML for
  6. ! missing data estimation, perhaps using auxillary varibles to account
  7. ! for non-ignorable missingness;
  8. variable: names = emo1 emo2 emo3 ;
  9. missing=blank;
  10. analysis: ! by default mean structures are estimated;
  11. ! Below is the syntax for a typical latent growth model,
  12. ! where square brackets estimate or set means and intercepts.
  13. ! It is typical to set individual indicator intercepts to zero
  14. ! for identification purposes.
  15. !model: intercep by emo1@1 emo2@1 emo3@1;
  16. ! slope by emo1@0 emo2@1 emo3@2;
  17. ! [emo1-emo3@0];
  18. ! [intercep slope];
  19. ! Mplus has shortcut syntax for growth models, the following
  20. ! statements produce the same results as the above statements;
  21. model: i s | emo1@0 emo2@1 emo3@2;
  22. output: stdyx ;
复制代码

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 11:59