楼主: 牛尾巴
4283 59

【独家发布】【kindle】R Data Analysis Cookbook - More Than 80 Recipes to Help You Delive [推广有奖]

31
franky_sas 发表于 2016-7-20 10:36:56
Thanks for sharing

32
Alpha-one 发表于 2016-7-21 21:45:44
感谢楼主提供好资料!

33
dongyang198 发表于 2016-7-22 01:27:41
看来是一本很好的R工具书。

34
毕加索的幻想 发表于 2016-7-22 10:10:28
谢谢楼主分享啊

35
Yilia527 发表于 2016-7-22 19:13:28
R软件很不错,打算学习

36
Hugo2016 发表于 2016-7-25 07:37:54
谢谢楼主分享

37
hanszhu 发表于 2016-7-25 20:13:48
Aprender todos los días!

38
hanszhu 发表于 2016-7-25 20:21:08
【独家发布】【kindle】R Data Analysis Cookbook - More Than 80 Recipes to Help You Delive
36 个回复 - 308 次查看如果喜欢该文档,欢迎订阅【kindle电子书】文库,https://bbs.pinggu.org/forum.php? ... =view&ctid=3186
图书名称:R Data AnalysisCookbook - More Than 80 Recipes to Help You ...2016-7-9 11:49 - 牛尾巴 - winbugs专版

R Data Analysis Cookbook
27 个回复 - 1165 次查看Table of Contents Preface v Chapter 1: Acquire and Prepare the Ingredients – Your Data 1 Introduction 2 Reading data from CSV files 2 Reading XML data 5 Reading JSON data 7 Reading data from fixe ...2015-8-26 10:12 - yangbenfa - 数据分析与数据挖掘上传下载区

【经典教材系列】R Data Analysis Cookbook
187 个回复 - 7103 次查看2015年最新教材降价出售期已过!想要随时跟踪最新好书,请点击头像下方“加关注”。关注成功后,查看这里即可:关注的帖子。 [相关阅读] 【经典教材系列】(资料汇总帖,附链接,持续添加中) 【大数据系 ...2015-5-30 06:55 - wwqqer - S-Plus&R专版

R Data Analysis Cookbook and R Data Visualization Cookbook
42 个回复 - 1632 次查看Data analytics with R has emerged as a very important focus for organizations of all kinds. R enables even those with only an intuitive grasp of the underlying concepts, without a deep mathematica ...2015-6-15 11:42 - ipple7 - winbugs专版

R DATA ANALYSIS COOKBOOK 书中使用的数据和代码
6 个回复 - 184 次查看这本书对于学习R语言的同志们来说很有用,但是书中的数据和代码国内无法下载,因此带来很大的困境,搜遍全网,也没有,这是从国外注册后下载的,需要的同志们可以下载使用了。2016-3-30 08:23 - 奇渥温·沙加 - S-Plus&R专版

Scala Data Analysis Cookbook
12 个回复 - 890 次查看内容隐藏需要,请点击进去查看2015-11-1 04:24 - Nicolle - winbugs专版

R Data Analysis Cookbook
10 个回复 - 602 次查看R Data Analysis Cookbook Copyright © 2015 Packt PublishingAll rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any mean ...2015-6-9 18:52 - lzguo568 - python论坛

【独家发布】Scala Data Analysis Cookbook
2 个回复 - 528 次查看About This Book
  • Implement Scala in your data analysis using features from Spark, Breeze, and Zeppelin
  • Scale up your data anlytics infrastructure with practical recipes for Scala ma ...2016-1-30 01:41 - neuroexplorer - 经管书评
    [精品图书]Access Data Analysis Cookbook
    6 个回复 - 704 次查看**** 本内容被作者隐藏 ****2015-2-10 04:12 - ReneeBK - winbugs专版

    [牛尾巴]Haskell Data Analysis Cookbook 2014
    21 个回复 - 662 次查看2015-7-3 08:27 - Nicolle - winbugs专版

    Clojure Data Analysis Cookbook - Second Edition
    17 个回复 - 396 次查看2015-8-26 09:06 - Nicolle - winbugs专版

    Clojure Data Analysis Cookbook
    10 个回复 - 730 次查看**** 本内容被作者隐藏 ****2015-4-17 08:10 - Lisrelchen - winbugs专版

    Haskell Data Analysis Cookbook
    64 个回复 - 4264 次查看**** 本内容被作者隐藏 ****2015-5-10 11:32 - ReneeBK - winbugs专版

    Clojure Data Analysis Cookbook
    2 个回复 - 868 次查看2013-12-31 09:16 - winslow - S-Plus&R专版


  • 39
    hanszhu 发表于 2016-7-25 20:27:26
    1. Generating error/classification-confusion
    2. matrices
    3. > cp <- read.csv("college-perf.csv")
    4. > cp$Perf <- ordered(cp$Perf, levels =
    5. + c("Low", "Medium", "High"))
    6. > cp$Pred <- ordered(cp$Pred, levels =
    7. + c("Low", "Medium", "High"))

    8. 1. First create and display a two-way table based on the actual and predicted values:
    9. > tab <- table(cp$Perf, cp$Pred,
    10. + dnn = c("Actual", "Predicted"))
    11. > tab

    12. 2. Display the raw numbers as proportions or percentages. To get overall table-level
    13. proportions use:
    14. > prop.table(tab)

    15. 3. We often find it more convenient to interpret row-wise or column-wise percentages.
    16. To get row-wise percentages rounded to one decimal place, you can pass a second
    17. argument as 1:
    18. > round(prop.table(tab, 1)*100, 1)
    复制代码

    40
    Lisrelchen 发表于 2016-7-25 20:31:52
    1. Generating ROC charts
    2. To generate ROC charts, follow these steps:
    3. 1. Load the package ROCR:
    4. > library(ROCR)
    5. 2. Read the data file and take a look:
    6. > dat <- read.csv("roc-example-1.csv")
    7. > head(dat)
    8. 3. Create the prediction object:
    9. > pred <- prediction(dat$prob, dat$class)
    10. 4. Create the performance object:
    11. > perf <- performance(pred, "tpr", "fpr")
    12. 5. Plot the chart:
    13. > plot(perf)
    14. > lines( par()$usr[1:2], par()$usr[3:4] )
    复制代码

    您需要登录后才可以回帖 登录 | 我要注册

    本版微信群
    加好友,备注jltj
    拉您入交流群
    GMT+8, 2026-1-24 12:18