楼主: dou1jiang
3952 9

[学科前沿] Simulation and Monte Carlo with Applications,Dagpunar - John Wiley.pdf [推广有奖]

  • 6关注
  • 0粉丝

已卖:912份资源

博士生

42%

还不是VIP/贵宾

-

威望
0
论坛币
62443 个
通用积分
19.5204
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
976 点
帖子
66
精华
0
在线时间
520 小时
注册时间
2008-3-13
最后登录
2025-10-10

楼主
dou1jiang 发表于 2009-6-19 10:41:51 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Simulation and Monte Carlo
With applications in finance and MCMC
J. S. Dagpunar
School of Mathematics
University of Edinburgh, UK


Preface xi
Glossary xiii
1 Introduction to simulation and Monte Carlo 1
1.1 Evaluating a definite integral 2
1.2 Monte Carlo is integral estimation 4
1.3 An example 5
1.4 A simulation using Maple 7
1.5 Problems 13
2 Uniform random numbers 17
2.1 Linear congruential generators 18
2.1.1 Mixed linear congruential generators 18
2.1.2 Multiplicative linear congruential generators 22
2.2 Theoretical tests for random numbers 25
2.2.1 Problems of increasing dimension 26
2.3 Shuffled generator 28
2.4 Empirical tests 29
2.4.1 Frequency test 29
2.4.2 Serial test 30
2.4.3 Other empirical tests 30
2.5 Combinations of generators 31
2.6 The seed(s) in a random number generator 32
2.7 Problems 32
3 General methods for generating random variates 37
3.1 Inversion of the cumulative distribution function 37
3.2 Envelope rejection 40
3.3 Ratio of uniforms method 44
3.4 Adaptive rejection sampling 48
3.5 Problems 52
4 Generation of variates from standard distributions 59
4.1 Standard normal distribution 59
4.1.1 Box–Müller method 59
4.1.2 An improved envelope rejection method 61
4.2 Lognormal distribution 62
4.3 Bivariate normal density 63
4.4 Gamma distribution 64
4.4.1 Cheng’s log-logistic method 65
4.5 Beta distribution 67
4.5.1 Beta log-logistic method 67
4.6 Chi-squared distribution 69
4.7 Student’s t distribution 69
4.8 Generalized inverse Gaussian distribution 71
4.9 Poisson distribution 73
4.10 Binomial distribution 74
4.11 Negative binomial distribution 74
4.12 Problems 75
5 Variance reduction 79
5.1 Antithetic variates 79
5.2 Importance sampling 82
5.2.1 Exceedance probabilities for sums of i.i.d. random variables 86
5.3 Stratified sampling 89
5.3.1 A stratification example 92
5.3.2 Post stratification 96
5.4 Control variates 98
5.5 Conditional Monte Carlo 101
5.6 Problems 103
6 Simulation and finance 107
6.1 Brownian motion 108
6.2 Asset price movements 109
6.3 Pricing simple derivatives and options 111
6.3.1 European call 113
6.3.2 European put 114
6.3.3 Continuous income 115
6.3.4 Delta hedging 115
6.3.5 Discrete hedging 116
6.4 Asian options 118
6.4.1 Naive simulation 118
6.4.2 Importance and stratified version 119
6.5 Basket options 123
6.6 Stochastic volatility 126
6.7 Problems 130
7 Discrete event simulation 135
7.1 Poisson process 136
7.2 Time-dependent Poisson process 140
7.3 Poisson processes in the plane 141
7.4 Markov chains 142
7.4.1 Discrete-time Markov chains 142
7.4.2 Continuous-time Markov chains 143
7.5 Regenerative analysis 144
7.6 Simulating a G/G/1 queueing system using the three-phase method 146
7.7 Simulating a hospital ward 149
7.8 Problems 151
8 Markov chain Monte Carlo 157
8.1 Bayesian statistics 157
8.2 Markov chains and the Metropolis–Hastings (MH) algorithm 159
8.3 Reliability inference using an independence sampler 163
8.4 Single component Metropolis–Hastings and Gibbs sampling 165
8.4.1 Estimating multiple failure rates 167
8.4.2 Capture–recapture 171
8.4.3 Minimal repair 172
8.5 Other aspects of Gibbs sampling 176
8.5.1 Slice sampling 176
8.5.2 Completions 178
8.6 Problems 179
9 Solutions 187
9.1 Solutions 1 187
9.2 Solutions 2 187
9.3 Solutions 3 190
9.4 Solutions 4 191
9.5 Solutions 5 195
9.6 Solutions 6 196
9.7 Solutions 7 202
9.8 Solutions 8 205
Appendix 1: Solutions to problems in Chapter 1 209
Appendix 2: Random number generators 227
Appendix 3: Computations of acceptance probabilities 229
Appendix 4: Random variate generators (standard distributions) 233
Appendix 5: Variance reduction 239
Appendix 6: Simulation and finance 249
Appendix 7: Discrete event simulation 283
Appendix 8: Markov chain Monte Carlo 299
References 325
Index 329
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Monte Carlo Application Simulation Dagpunar example finance numbers Maple

沙发
dumb(真实交易用户) 发表于 2009-6-19 11:58:25
Thank you very much.
身是菩提树,心如明镜台,时时勤拂拭,勿使惹尘埃。
菩提本无树,明镜亦非台,本来无一物,何处惹尘埃?

藤椅
jianjun-wu(真实交易用户) 发表于 2009-6-27 02:47:50
thanks !!!

板凳
danchina(真实交易用户) 发表于 2009-7-22 21:28:20
Thank you very much.

报纸
izzibera(真实交易用户) 发表于 2009-8-12 09:44:35
really great

地板
amber625(真实交易用户) 发表于 2009-11-1 05:28:00
太感谢了,好书

7
lzj360(真实交易用户) 发表于 2009-11-17 16:47:46
感谢lz分享

8
deadknight10(真实交易用户) 发表于 2009-11-25 17:40:51
谢谢分享。

9
liuhztang(真实交易用户) 发表于 2009-11-26 15:32:44
good, many thanks

10
moonsphere(真实交易用户) 发表于 2009-11-29 10:29:45
谢谢分享!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-29 01:55