楼主: cmwei333
2337 14

【大数据分析】 Big Data Analytics in Genomics (2016) [推广有奖]

贵宾

已卖:205047份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3605708 个
通用积分
1120.9425
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-12-3 06:01:30 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Big Data Analytics in Genomics

Editors: Ka-Chun Wong

cover.jpg

Treats both theoretical and practical aspects of scalable data analysis in genome research

Covers various applications in high impact problems, such as cancer genome analytics

Includes concrete cases that illustrate how to develop solid computational pipelines for genomics

This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace.  To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA.  In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science.  Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

Table of contents

Front Matter
Pages i-viii

Statistical Analytics
Front Matter
Pages 1-1
Introduction to Statistical Methods for Integrative Data Analysis in Genome-Wide Association Studies
Pages 3-23
Robust Methods for Expression Quantitative Trait Loci Mapping
Pages 25-88
Causal Inference and Structure Learning of Genotype–Phenotype Networks Using Genetic Variation
Pages 89-143
Genomic Applications of the Neyman–Pearson Classification Paradigm
Pages 145-167

Computational Analytics
Front Matter
Pages 169-169
Improving Re-annotation of Annotated Eukaryotic Genomes
Pages 171-195
State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms
Pages 197-223
A Survey of Computational Methods for Protein Function Prediction
Pages 225-298
Genome-Wide Mapping of Nucleosome Position and Histone Code Polymorphisms in Yeast
Pages 299-313

Cancer Analytics
Front Matter
Pages 315-315
Perspectives of Machine Learning Techniques in Big Data Mining of Cancer
Pages 317-336
Mining Massive Genomic Data for Therapeutic Biomarker Discovery in Cancer: Resources, Tools, and Algorithms
Pages 337-355
NGS Analysis of Somatic Mutations in Cancer Genomes
Pages 357-372
OncoMiner: A Pipeline for Bioinformatics Analysis of Exonic Sequence Variants in Cancer
Pages 373-396
A Bioinformatics Approach for Understanding Genotype–Phenotype Correlation in Breast Cancer
Pages 397-428

原版 PDF + EPUB:

本帖隐藏的内容

原版 PDF:
Big Data Analytics in Genomics.pdf (9.14 MB, 需要: 20 个论坛币)

PDF 压缩包:
Big Data Analytics in Genomics (pdf).zip (6.93 MB, 需要: 20 个论坛币) 本附件包括:
  • Big Data Analytics in Genomics.pdf


EPUB:
Big Data Analytics in Genomics.epub (4.55 MB, 需要: 20 个论坛币)

EPUB 压缩包:
Big Data Analytics in Genomics (epub).zip (4.46 MB, 需要: 20 个论坛币) 本附件包括:
  • Big Data Analytics in Genomics.epub


PDF + EPUB 压缩包:
Big Data Analytics in Genomics (pdf epub).zip (11.39 MB, 需要: 40 个论坛币) 本附件包括:
  • Big Data Analytics in Genomics.pdf
  • Big Data Analytics in Genomics.epub




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Analytics Analytic Big data Genomics Genomic practical concrete emerging problems between

已有 1 人评分热心指数 收起 理由
zhuosn + 5 奖励积极上传好的资料

总评分: 热心指数 + 5   查看全部评分

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
Nicolle(真实交易用户) 学生认证  发表于 2016-12-3 08:08:08
提示: 作者被禁止或删除 内容自动屏蔽

藤椅
soccy(真实交易用户) 发表于 2016-12-3 08:09:28
......

板凳
w-long(真实交易用户) 发表于 2016-12-3 08:14:42
Big Data Analytics in Genomics

报纸
life_life(未真实交易用户) 发表于 2016-12-3 09:52:45
学习  学习,,,

地板
franky_sas(未真实交易用户) 发表于 2016-12-3 10:22:42
Thanks!

7
frankly1020(真实交易用户) 在职认证  发表于 2016-12-3 18:50:25
好书,下来学习一下

8
糊涂虫(真实交易用户) 发表于 2016-12-3 21:56:03
下载看看

9
tnandy(真实交易用户) 发表于 2016-12-3 22:06:42
thanks

10
bbslover(真实交易用户) 在职认证  发表于 2016-12-3 23:34:58
thanks for sharing this

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-21 22:10