楼主: asus_tnt2
18177 47

【下载】Bayesian Modeling Using WinBUGS [推广有奖]

  • 0关注
  • 0粉丝

已卖:477份资源

硕士生

18%

还不是VIP/贵宾

-

威望
0
论坛币
7314 个
通用积分
12.4555
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
3905 点
帖子
102
精华
0
在线时间
163 小时
注册时间
2007-3-25
最后登录
2025-11-8

楼主
asus_tnt2 发表于 2009-7-27 10:48:50 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
名称:Bayesian Modeling Using WinBUGS(Wiley2009年2月出版)
Bayesian Modeling Using WinBUGS.pdf (26.99 MB, 需要: 25 个论坛币)
大小:共计490页,26.9MB
格式:PDF

作者:
           Ioannis Ntzoufras, PhD, is Assistant Professor of Statistics atAthens University of Economics and Business (Greece). Dr. Ntzoufras haspublished numerous journal articles in his areas of research interest,which include Bayesian statistics, statistical analysis andprogramming, and generalized linear models.
介绍:
          The BUGS (Bayesian inference Using Gibbs Sampling) project is concernedwith free, flexible software for the Bayesian analysis of complexstatistical models using Markov Chain Monte Carlo (MCMC) methods. Itdetails the various and commonly-used modeling techniques that areemployed by statisticians in a multitude of sciences such as;biostatistics and social science; actuarial science environments. Thisbook presents the reader with a clear and easily accessibleintroduction to the use of WinBUGS programming techniques in a varietyof Bayesian modeling settings. Emphasis is given to Generalized LinearModels (GLMs) familiar to most readers and researchers. Detailedexplanations cover model building, prior specification, writing WinBUGScode, and analyzing and interpreting WinBUGS output. Also featurescomprehensive problems and examples.
目录:
Preface.Acknowledgments.
Acronyms.
1. Introduction to Bayesian inference.
1.1 Introduction: Bayesian modeling in the 21st century.
1.2 Definition of statistical models.
1.3 Bayes theorem.
1.4 Model-based Bayesian Inference.
1.5 Inference using conjugate prior distributions.
1.6 Nonconjugate Analysis.
Problems.
2. Markov Chain Monte Carlo Algorithms in Bayesian Inference.
2.1 Simulation, Monte Carlo integration, and their implementation in Bayesian inference.
2.2 Markov chain Monte Carlo methods.
2.3 Popular MCMC algorithms.
2.4 Summary and closing remarks.
Problems.
3. WinBUGS Software: Introduction, Setup and Basic Analysis.
3.1 Introduction and historical background.
3.2 The WinBUGS environment.
3.3 Preliminaries on using WinBUGS.
3.4 Building Bayesian models in WinBUGS.
3.5 Compiling the model and simulating values.
3.6 Basic output analysis using the sample monitor tool.
3.7 Summarizing the procedure.
3.8 Chapter summary and concluding comments.
Problems.
4. WinBUGS Software: Illustration, Results, and Further Analysis.
4.1 A complete example of running MCMC in WinBUGS for a simple model.
4.2 Further output analysis using the inference menu.
4.3 Multiple chains.
4.4 Changing the properties of a figure.
4.5 Other tools and menus.
4.6 Summary and concluding remarks.
Problems.
5. Introduction to Bayesian Models: Normal models.
5.1 General modeling principles.
5.2 Model specification in normal regression models.
5.3 Using vectors and multivariate priors in normal regression models.
5.4 Analysis of variance models.
Problems.
6. Incorporating Categorical Variables in Normal Models and Further Modeling Issues.
6.1 Analysis of variance models using dummy variables.
6.2 Analysis of covariance models.
6.3 A Bioassay example.
6.4 Further modeling issues.
6.5 Closing remarks.
Problems.
7. Introduction to Generalized Linear Models: Binomial and Poisson Data.
7.1 Introduction.
7.2 Prior distributions.
7.3 Posterior inference.
7.4 Poisson regression models.
7.5 Binomial response models.
7.6 Models for contingency tables.
Problems.
8. Models for Positive Continuous Data, Count Data, and Other GLM-Based Extensions.
8.1 Models with nonstandard distributions.
8.2 Models for positive continuous response variables.
8.3 Additional models for count data.
8.4 Further GLM-based models and extensions.
Problems.
9. Bayesian Hierarchical Models.
9.1 Introduction.
9.2 Some simple examples.
9.3 The generalized linear mixed model formulation.
9.4 Discussion, closing remarks, and further reading.
Problems.
10. The Predictive Distribution and Model Checking.
10.1 Introduction.
10.2 Estimating the predictive distribution for future or missing observations using MCMC.
10.3 Using the predictive distribution for model checking.
10.4 Using cross-validation predictive densities for model checking, evaluation, and comparison.
10.5 Illustration of a complete predictive analysis: Normal regression models.
10.6 Discussion.
Problems.
11. Bayesian Model and Variable Evaluation.
11.1 Prior predictive distributions as measures of model comparison: Posterior model odds and Bayes factors.
11.2 Sensitivity of the posterior model probabilities: The Lindley-Bartlett paradox.
11.3 Computation of the marginal likelihood.
11.4 Computation of the marginal likelihood using WinBUGS.
11.5 Bayesian variable selection using Gibbs-based methods.
11.6 Posterior inference using the output of Bayesian variable selection samplers.
11.7 Implementation of Gibbs variable selection in WinBUGS using an illustrative example.
11.8 The Carlin Chib’s method.
11.9 Reversible jump MCMC (RJMCMC).
11.10 Using posterior predictive densities for model evaluation.
11.11 Information criteria.
11.12 Discussion and further reading.
Problems.
Appendix A: Model Specification via Directed Acyclic Graphs: The Doodle Menu.
A.1 Introduction: Starting with DOODLE.
A.2 Nodes.
A.3 Edges.
A.4 Panels.
A.5 A simple example.
Appendix B: The Batch Mode: Running a Model in the Background Using Scripts.
B.1 Introduction.
B.2 Basic commands: Compiling and running the model.
Appendix C: Checking Convergence Using CODA/BOA.
C.1 Introduction.
C.2 A short historical review.
C.3 Diagnostics implemented by CODA/BOA.
C.4 A first look of CODA/BOA.
C.5 A simple example.
Appendix D: Notation Summary.
D.1 MCMC.
D.2 Subscripts and indices.
D.3 Parameters.
D.4 Random variables and data.
D.5 Sample estimates.
D.6 Special functions, vectors and matrices.
D.7 Distributions.
D.8 Distribution-related notation.
D.9 Notation used in ANOVA and ANCOVA.
D.10 Variable and model specification.
D.11 Deviance information criterion (DIC).
D.12 Predictive measures.
References.
Index.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Modeling Bayesian winbugs WINBUG Using 下载 Modeling Using Bayesian winbugs

本帖被以下文库推荐

沙发
luo5451124(真实交易用户) 发表于 2009-7-27 21:57:58
物有所值!

藤椅
stanleyjunjun(真实交易用户) 发表于 2009-7-28 23:56:52
好书!虽然该软件的应用很多地方都有介绍,但如此完整的介绍还是非常有价值的。

板凳
asus_tnt2(未真实交易用户) 发表于 2009-7-31 23:26:20
用winbugs下来感觉 winbugs好像自带没有GED分布  自定义又太麻烦   希望能改进

报纸
gis029(未真实交易用户) 发表于 2009-8-12 13:50:38
很好的书,wibugs

地板
melody-2046(真实交易用户) 发表于 2009-8-15 16:55:42
好贵~还是谢谢啦~`

7
苍冥之鹰(真实交易用户) 发表于 2009-8-18 11:43:43
下下来慢慢欣赏

8
jackknife(真实交易用户) 发表于 2009-8-23 10:33:07
几乎被LZ倾家荡产……
不过还是值得。

9
shenshen0455(未真实交易用户) 发表于 2009-9-24 16:50:51
买了就破产了,哎,只有忍

10
迷迷匣子(未真实交易用户) 发表于 2009-10-17 14:41:15
好,不错,正是我需要的

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-30 22:08