楼主: ifallasleepjing
4803 3

[学科前沿] Reinforcement Learning: An Introduction 书的WORD版 [推广有奖]

  • 0关注
  • 0粉丝

已卖:812份资源

硕士生

7%

还不是VIP/贵宾

-

威望
0
论坛币
5254 个
通用积分
2.8090
学术水平
13 点
热心指数
9 点
信用等级
4 点
经验
2125 点
帖子
69
精华
0
在线时间
136 小时
注册时间
2009-8-6
最后登录
2021-11-22

楼主
ifallasleepjing 发表于 2009-8-6 18:08:42 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Reinforcement Learning:

An Introduction


Richard S. Sutton and Andrew G. Barto

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England


In memory of A. Harry Klopf


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction troduction Learning earning Cement memory

书.doc
下载链接: https://bbs.pinggu.org/a-374870.html

5.97 MB

需要: 100 个论坛币  [购买]

Reinforcement Learning: An Introduction 书的WORD版

沙发
ifallasleepjing(未真实交易用户) 发表于 2009-8-6 18:12:36
Contents
    Preface
    Series Forward
    Summary of Notation


  I. The Problem
    1. Introduction
      1.1 Reinforcement Learning
      1.2 Examples
      1.3 Elements of Reinforcement Learning
      1.4 An Extended Example: Tic-Tac-Toe
      1.5 Summary
      1.6 History of Reinforcement Learning
      1.7 Bibliographical Remarks
    2. Evaluative Feedback
      2.1 An -Armed Bandit Problem
      2.2 Action-Value Methods
      2.3 Softmax Action Selection
      2.4 Evaluation Versus Instruction
      2.5 Incremental Implementation
      2.6 Tracking a Nonstationary Problem
      2.7 Optimistic Initial Values
      2.8 Reinforcement Comparison
      2.9 Pursuit Methods
      2.10 Associative Search
      2.11 Conclusions
      2.12 Bibliographical and Historical Remarks
    3. The Reinforcement Learning Problem
      3.1 The Agent-Environment Interface
      3.2 Goals and Rewards
      3.3 Returns
      3.4 Unified Notation for Episodic and Continuing Tasks
      3.5 The Markov Property
      3.6 Markov Decision Processes
      3.7 Value Functions
      3.8 Optimal Value Functions
      3.9 Optimality and Approximation
      3.10 Summary
      3.11 Bibliographical and Historical Remarks


  II. Elementary Solution Methods
    4. Dynamic Programming
      4.1 Policy Evaluation
      4.2 Policy Improvement
      4.3 Policy Iteration
      4.4 Value Iteration
      4.5 Asynchronous Dynamic Programming
      4.6 Generalized Policy Iteration
      4.7 Efficiency of Dynamic Programming
      4.8 Summary
      4.9 Bibliographical and Historical Remarks
    5. Monte Carlo Methods
      5.1 Monte Carlo Policy Evaluation
      5.2 Monte Carlo Estimation of Action Values
      5.3 Monte Carlo Control
      5.4 On-Policy Monte Carlo Control
      5.5 Evaluating One Policy While Following Another
      5.6 Off-Policy Monte Carlo Control
      5.7 Incremental Implementation
      5.8 Summary
      5.9 Bibliographical and Historical Remarks
    6. Temporal-Difference Learning
      6.1 TD Prediction
      6.2 Advantages of TD Prediction Methods
      6.3 Optimality of TD(0)
      6.4 Sarsa: On-Policy TD Control
      6.5 Q-Learning: Off-Policy TD Control
      6.6 Actor-Critic Methods
      6.7 R-Learning for Undiscounted Continuing Tasks
      6.8 Games, Afterstates, and Other Special Cases
      6.9 Summary
      6.10 Bibliographical and Historical Remarks


  III. A Unified View
    7. Eligibility Traces
      7.1 -Step TD Prediction
      7.2 The Forward View of TD()
      7.3 The Backward View of TD()
      7.4 Equivalence of Forward and Backward Views
      7.5 Sarsa()
      7.6 Q()
      7.7 Eligibility Traces for Actor-Critic Methods
      7.8 Replacing Traces
      7.9 Implementation Issues
      7.10 Variable  
      7.11 Conclusions
      7.12 Bibliographical and Historical Remarks
    8. Generalization and Function Approximation
      8.1 Value Prediction with Function Approximation
      8.2 Gradient-Descent Methods
      8.3 Linear Methods
        8.3.1 Coarse Coding
        8.3.2 Tile Coding
        8.3.3 Radial Basis Functions
        8.3.4 Kanerva Coding
      8.4 Control with Function Approximation
      8.5 Off-Policy Bootstrapping
      8.6 Should We Bootstrap?
      8.7 Summary
      8.8 Bibliographical and Historical Remarks
    9. Planning and Learning
      9.1 Models and Planning
      9.2 Integrating Planning, Acting, and Learning
      9.3 When the Model Is Wrong
      9.4 Prioritized Sweeping
      9.5 Full vs. Sample Backups
      9.6 Trajectory Sampling
      9.7 Heuristic Search
      9.8 Summary
      9.9 Bibliographical and Historical Remarks
    10. Dimensions of Reinforcement Learning
      10.1 The Unified View
      10.2 Other Frontier Dimensions
    11. Case Studies
      11.1 TD-Gammon
      11.2 Samuel's Checkers Player
      11.3 The Acrobot
      11.4 Elevator Dispatching
      11.5 Dynamic Channel Allocation
      11.6 Job-Shop Scheduling
天天向上!

藤椅
tjuzzh(未真实交易用户) 发表于 2010-7-12 14:43:53
想钱想疯了把!有人买吗?网上都有!

板凳
baiyantao(未真实交易用户) 发表于 2011-5-16 09:53:38
  想钱想疯了的楼主

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-28 13:08