楼主: onetwothreehaha
2538 4

Pricing Models for Bermudan-style Interest Rate Derivatives_PIETERSZ [推广有奖]

  • 2关注
  • 0粉丝

已卖:939份资源

本科生

89%

还不是VIP/贵宾

-

威望
0
论坛币
1260 个
通用积分
0.3000
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2505 点
帖子
87
精华
0
在线时间
110 小时
注册时间
2006-4-22
最后登录
2016-4-16

楼主
onetwothreehaha 发表于 2009-8-16 03:27:14 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Pricing Models for Bermudan-style Interest Rate Derivatives_PIETERSZ

PDF 250p Pricing Models for Bermudan-style Interest Rate Derivatives_PIETERSZ.pdf (4.22 MB, 需要: 5 个论坛币)

Acknowledgements vii
Notation xix
Outline xxiii
1 Introduction 1
1.1 Arbitrage-free pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Use of models in practice . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Interest rate markets and options . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Linear products: Deposits, bonds, and swaps . . . . . . . . . . . . . 7
1.2.2 Interest rate options: Caps, floors, and swaptions . . . . . . . . . . 8
1.3 Interest rate derivatives pricing models . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Short rate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Market models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Markov-functional models . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 American option pricing with Monte Carlo simulation . . . . . . . . . . . . 17
2 Risk-managing Bermudan swaptions in a LIBOR model 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Recalibration approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Swap vega and the swap market model . . . . . . . . . . . . . . . . . . . . 27
2.5 Alternative method for calculating swap vega . . . . . . . . . . . . . . . . 29
2.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Comparison with the swap market model . . . . . . . . . . . . . . . . . . . 30
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.A Appendix: Negative vega two-stock Bermudan options . . . . . . . . . . . 34
x CONTENTS
3 Rank reduction of correlation matrices by majorization 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Modified PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Geometric programming . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Alternating projections without normal correction . . . . . . . . . . 45
3.2.5 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.6 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.7 Alternating projections with normal correction (d = n) . . . . . . . 47
3.3 Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 The algorithm and convergence analysis . . . . . . . . . . . . . . . . . . . 50
3.4.1 Global convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Local rate of convergence . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Numerical comparison with other methods . . . . . . . . . . . . . . 54
3.5.2 Non-constant weights . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 The order effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.4 Majorization equipped with the power method . . . . . . . . . . . . 62
3.5.5 Using an estimate for the largest eigenvalue . . . . . . . . . . . . . 62
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.A Appendix: Proof of Equation (3.11) . . . . . . . . . . . . . . . . . . . . . . 64
4 Rank reduction of correlation matrices by geometric programming 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.1 Weighted norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Solution methodology with geometric optimisation . . . . . . . . . . . . . . 71
4.2.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Topological structure . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 A dense part of Mn;d equipped with a differentiable structure . . . . 74
4.2.4 The Cholesky manifold . . . . . . . . . . . . . . . . . . . . . . . . . 75
......

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:derivatives Derivative interest Pietersz Bermudan models derivatives Pricing Rate interest

沙发
phill(未真实交易用户) 发表于 2009-8-16 05:32:05

藤椅
tsuki(未真实交易用户) 发表于 2009-8-18 14:55:36
楼上的~3q~

板凳
onetwothreehaha(未真实交易用户) 发表于 2009-8-19 20:37:02
TO: Phill,

Honestly, many articles are free downloaded in the internet, including yours, by which your forum money is
reaching 1103. On the other hand, my ask price is not too high, but only 5.

If you are interested and skillful in surfing, please find out all free articles url, whose ask price is over 50.

Thanks.

报纸
lomberer(未真实交易用户) 发表于 2013-6-21 23:30:40
good

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-31 00:29