楼主: igs816
5110 104

[其他] Hands-On Machine Learning with Scikit-Learn and TensorFlow   [推广有奖]

泰斗

0%

还不是VIP/贵宾

-

威望
9
论坛币
2343245 个
通用积分
17282.7945
学术水平
2642 点
热心指数
3356 点
信用等级
2467 点
经验
442157 点
帖子
5164
精华
52
在线时间
2799 小时
注册时间
2007-8-6
最后登录
2019-8-24

igs816 在职认证  发表于 2017-3-16 14:14:25 |显示全部楼层
hands-machine-learning-scikit-learn-tensorflow.jpg


Author: Aurelien Geron
Pub Date: 2017
ISBN: 978-1491962299
Pages: 581
Language: English
Format: EPUB/AZW3/PDF (conv)
Size: 56 Mb

Concepts, Tools, and Techniques to Build Intelligent Systems
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
  • Explore the machine learning landscape, particularly neural nets
  • Use scikit-learn to track an example machine-learning project end-to-end
  • Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
  • Use the TensorFlow library to build and train neural nets
  • Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
  • Learn techniques for training and scaling deep neural nets
  • Apply practical code examples without acquiring excessive machine learning theory or algorithm details

Table of Contents
I. The Fundamentals of Machine Learning
1. The Machine Learning Landscape
2. End-to-End Machine Learning Project
3. Classification
4. Training Models
5. Support Vector Machines
6. Decision Trees
7. Ensemble Learning and Random Forests
8. Dimensionality Reduction
II. Neural Networks and Deep Learning
9. Up and Running with TensorFlow
10. Introduction to Artificial Neural Networks
11. Training Deep Neural Nets
12. Distributing TensorFlow Across Devices and Servers
13. Convolutional Neural Networks
14. Recurrent Neural Networks
15. Autoencoders
16. Reinforcement Learning
A. Exercise Solutions
B. Machine Learning Project Checklist
C. SVM Dual Problem
D. Autodiff
E. Other Popular ANN Architectures


本帖隐藏的内容

Hands-On Machine Learning with Scikit-Learn and TensorFlow.rar (58.21 MB, 售价: 10 个论坛币)




本帖被以下文库推荐

stata SPSS
ekscheng 发表于 2017-3-16 14:24:29 |显示全部楼层
回复

使用道具 举报

钱学森64 发表于 2017-3-16 14:25:06 |显示全部楼层
谢谢分享
回复

使用道具 举报

MouJack007 发表于 2017-3-16 14:41:36 |显示全部楼层
谢谢楼主分享!
回复

使用道具 举报

MouJack007 发表于 2017-3-16 14:42:44 |显示全部楼层
回复

使用道具 举报

ybli 发表于 2017-3-16 14:49:28 |显示全部楼层
Hands-On Machine Learning with Scikit-Learn and TensorFlow
回复

使用道具 举报

franky_sas 发表于 2017-3-16 15:37:25 |显示全部楼层
回复

使用道具 举报

peterxu1969 发表于 2017-3-16 17:12:39 |显示全部楼层
thanks for giving
回复

使用道具 举报

elephann 发表于 2017-3-16 17:27:58 |显示全部楼层
Great!
回复

使用道具 举报

ermutuxia 发表于 2017-3-16 17:39:24 |显示全部楼层
Wonderful
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 我要注册

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2019-8-25 07:01