楼主: 0355lihao
1401 1

[Springer09新书]Optimality and Risk - Modern Trends in Mathematical Finance [推广有奖]

  • 0关注
  • 1粉丝

已卖:2225份资源

硕士生

57%

还不是VIP/贵宾

-

威望
0
论坛币
10941 个
通用积分
2.8870
学术水平
17 点
热心指数
16 点
信用等级
10 点
经验
2632 点
帖子
82
精华
1
在线时间
86 小时
注册时间
2006-3-17
最后登录
2025-12-3

楼主
0355lihao 发表于 2009-9-14 09:36:34 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Optimality and Risk - Modern Trends in Mathematical Finance: The Kabanov Festschrift By Freddy Delbaen, Miklós Rásonyi, Christophe Stricker
现在数理金融很火的啊,咱们也应该好好学学!




Product Details
  • Hardcover: 266 pages
  • Publisher: Springer; 1 edition (October 1, 2009)
  • Language: English
  • ISBN-10: 3642026079
  • ISBN-13: 978-3642026072

Editorial ReviewsProduct Description
Problems of stochastic optimization and various mathematical aspects of risk are the main themes of this contributed volume. The readers learn about the recent results and techniques of optimal investment, risk measures and derivative pricing. There are also papers touching upon credit risk, martingale theory and limit theorems.
Forefront researchers in probability and financial mathematics have contributed to this volume paying tribute to Yuri Kabanov, an eminent researcher in probability and mathematical finance, on the occasion of his 60th birthday. The volume gives a fair overview of these topics and the current approaches.

CONTENT
On the Extension of the Namioka-Klee Theorem and on the Fatou
Property for Risk Measures . . . . . . . . . . . . . . . . . . . . . . . 1
Sara Biagini and Marco Frittelli
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 The Extended Namioka Theorem . . . . . . . . . . . . . . . . . . 7
2.1 TheCurrentLiterature . . . . . . . . . . . . . . . . . . . . 9
3 On Order Lower Semicontinuity in Riesz Spaces . . . . . . . . . . 10
3.1 EquivalentFormulationsofOrder l.s.c. . . . . . . . . . . . 11
3.2 The Order Continuous Dual 1∼
n . . . . . . . . . . . . . . . 12
4 On the C-Property . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 The C-Property in the Representation of Convex and
Monotone Functionals . . . . . . . . . . . . . . . . . . . . 14
5 Orlicz Spaces and Applications to Risk Measures . . . . . . . . . 16
5.1 Orlicz Spaces Have the C-Property . . . . . . . . . . . . . 16
5.2 New Insights on the Downside Risk and Risk Measures
Associated to a Utility Function u . . . . . . . . . . . . . . 19
5.3 Quadratic-Flat Utility . . . . . . . . . . . . . . . . . . . . 26
5.4 Exponential Utility . . . . . . . . . . . . . . . . . . . . . . 27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
On Certain Distributions Associated with the Range of Martingales . . . 29
Alexander Cherny and Bruno Dupire
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Differentiability Properties of Utility Functions . . . . . . . . . . . . . . . 39
Freddy Delbaen
1 NotationandPreliminaries . . . . . . . . . . . . . . . . . . . . . 39
2 The Jouini-Schachermayer-Touzi Theorem . . . . . . . . . . . . . 42


Optimality and Risk.rar (2.33 MB, 需要: 5 个论坛币) 本附件包括:
  • 3642026079.pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mathematical mathematica Optimality Mathematic Springer 下载 分享

沙发
zhaohailei(未真实交易用户) 发表于 2010-1-28 13:18:30

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-5 18:52