楼主: ReneeBK
923 1

SystemML: Declarative Machine Learning on MapReduce [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.6937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2017-5-20 11:20:28 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
  1. Abstract—MapReduce is emerging as a generic parallel programming paradigm for large clusters of machines. This trend combined with the growing need to run machine learning (ML) algorithms on massive datasets has led to an increased interest in implementing ML algorithms on MapReduce. However, the cost of implementing a large class of ML algorithms as low-level MapReduce jobs on varying data and machine cluster sizes can be prohibitive. In this paper, we propose SystemML in which ML algorithms are expressed in a higher-level language and are compiled and executed in a MapReduce environment. This higher-level language exposes several constructs including linear algebra primitives that constitute key building blocks for a broad class of supervised and unsupervised ML algorithms. The algorithms expressed in SystemML are compiled and optimized into a set of MapReduce jobs that can run on a cluster of machines. We describe and empirically evaluate a number of optimization strategies for efficiently executing these algorithms on Hadoop, an open-source MapReduce implementation. We report an extensive performance evaluation on three ML algorithms on varying data and cluster size
复制代码

本帖隐藏的内容

SystemML-Declarative Machine Learning on MapReduce.pdf (1.16 MB)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:declarative MapReduce Learning earning machine

沙发
xiaoshiyue 发表于 2017-5-20 11:25:59

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-27 07:46