楼主: icapm
3057 2

[学科前沿] Brockwell-Intro to Time Series and Forcasting [推广有奖]

master of finance

已卖:6730份资源

讲师

48%

还不是VIP/贵宾

-

威望
0
论坛币
27187 个
通用积分
2.8515
学术水平
21 点
热心指数
37 点
信用等级
13 点
经验
8096 点
帖子
554
精华
0
在线时间
199 小时
注册时间
2008-3-16
最后登录
2023-5-19
毕业学校
北京大学

楼主
icapm 发表于 2009-9-22 00:22:39 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
教程+答案+数据+软件

Table of contents
Preface     
  1    INTRODUCTION     
    1.1    Examples of Time Series     
    1.2    Objectives of Time Series Analysis     
    1.3    Some Simple Time Series Models     
    1.3.3 A General Approach to Time Series Modelling     
    1.4 Stationary Models and the Autocorrelation Function     
    1.4.1 The Sample Autocorrelation Function     
    1.4.2 A Model for the Lake Huron Data     
    1.5 Estimation and Elimination of Trend and Seasonal Components     
    1.5.1 Estimation and Elimination of Trend in the Absence of Seasonality     
    1.5.2 Estimation and Elimination of Both Trend and Seasonality     
    1.6 Testing the Estimated Noise Sequence     
1.7 Problems   
  2    STATIONARY PROCESSES     
    2.1    Basic Properties     
    2.2    Linear Processes     
    2.3    Introduction to ARMA Processes     
    2.4 Properties of the Sample Mean and Autocorrelation Function     
    2.4.2 Estimation of $\gamma(\cdot)$ and $\rho(\cdot)$     
    2.5    Forecasting Stationary Time Series     
    2.5.3 Prediction of a Stationary Process in Terms of Infinitely Many Past Values     
    2.6    The Wold Decomposition     
1.7 Problems   
  3    ARMA MODELS     
    3.1    ARMA($p,q$) Processes     
    3.2 The ACF and PACF of an ARMA$(p,q)$ Process     
    3.2.1 Calculation of the ACVF     
    3.2.2 The Autocorrelation Function     
    3.2.3 The Partial Autocorrelation Function     
    3.3    Forecasting ARMA Processes     
1.7 Problems   
  4    SPECTRAL ANALYSIS     
    4.1    Spectral Densities     
    4.2    The Periodogram     
    4.3 Time-Invariant Linear Filters     
    4.4 The Spectral Density of an ARMA Process     
1.7 Problems   
    5 MODELLING AND PREDICTION WITH ARMA PROCESSES     
    5.1    Preliminary Estimation     
    5.1.1 Yule-Walker Estimation     
    5.1.3 The Innovations Algorithm     
    5.1.4 The Hannan-Rissanen Algorithm     
    5.2 Maximum Likelihood Estimation     
    5.3    Diagnostic Checking     
    5.3.1 The Graph of $\t=1,\ldots,n\     
    5.3.2 The Sample ACF of the Residuals     
    5.3.3 Tests for Randomness of the Residuals     
    5.4    Forecasting     
    5.5    Order Selection     
1.7 Problems   
    6 NONSTATIONARY AND SEASONAL TIME SERIES     
    6.1 ARIMA Models for Nonstationary Time Series     
    6.2    Identification Techniques     
    6.3 Unit Roots in Time Series Models     
    6.3.1 Unit Roots in Autoregressions     
    6.3.2 Unit Roots in Moving Averages     
    6.4    Forecasting ARIMA Models     
    6.5    Seasonal ARIMA Models     
    6.5.1 Forecasting SARIMA Processes     
    6.6 Regression with ARMA Errors     
1.7 Problems   
  7    MULTIVARIATE TIME SERIES     
    7.1    Examples     
    7.2 Second-Order Properties of Multivariate Time Series     
    7.3 Estimation of the Mean and Covariance Function     
    7.3.2 Estimation of $\Gamma(h)$     
    7.3.3 Testing for Independence of Two Stationary Time Series     
    7.4 Multivariate ARMA Processes     
    7.4.1 The Covariance Matrix Function of a Causal ARMA Process     
    7.5 Best Linear Predictors of Second-Order Random Vectors     
    7.6 Modelling and Forecasting with Multivariate AR Processes     
    7.6.1 Estimation for Autoregressive Processes Using Whittle's Algorithm     
    7.6.2 Forecasting Multivariate Autoregressive Processes     
    7.7    Cointegration     
1.7 Problems   
  8    STATE-SPACE MODELS     
    8.1 State-Space Representations     
    8.2    The Basic Structural Model     
    8.3 State-Space Representation of ARIMA Models     
    8.4    The Kalman Recursions     
    8.5 Estimation for State-Space Models     
    8.6 State-Space Models with Missing Observations     
    8.7    The EM Algorithm     
    8.8 Generalized State-Space Models     
1.7 Problems   
  9    FORECASTING TECHNIQUES     
    9.1    The ARAR Algorithm     
    9.1.1  Memory Shortening
    9.1.2  Fitting a Subset Autoregression     
    9.1.3  Forecasting
    9.1.4  Running the Program ARAR     
    9.2    The Holt-Winters Algorithm     
    9.3 The Holt-Winters Seasonal Algorithm
    9.4 Choosing a Forecasting Algorithm
1.7 Problems   
  10    FURTHER TOPICS     
    10.1    Transfer Function Models     
    10.1.1 Prediction Based on a Transfer-Function Model     
    10.2    Intervention Analysis     
    10.3    Nonlinear Models     
    10.3.1 Deviations From Linearity     
    10.3.2 Chaotic Deterministic Sequences     
    10.3.3 Distinguishing Between White Noise and IID Sequences     
    10.3.4 Three Useful Classes of Nonlinear Models     
    10.4    Continuous-Time Models     
    10.5    Long-Memory Models     
10.4 Problems   
APPENDIX     
  Appendix A    Random Variables     
    A.1 Distribution Functions and Expectation     
    A.2    Random Vectors     
    A.3 The Multivariate Normal Distribution     
A.3     Problems   
  Appendix B    Statistical Complements     
    B.1 Least Squares Estimation     
    B.1.1 The Gauss-Markov Theorem     
    B.1.2 Generalized Least Squares     
    B.2 Maximum Likelihood Estimation   
    B.2.1 Properties of Maximum Likelihood Estimators     
    B.3    Confidence Intervals     
    B.3.1 Large-Sample Confidence Regions     
    B.4    Hypothesis Testing     
    B.4.2 Large-Sample Tests Based on Confidence Regions     
  Appendix C    Mean Square Convergence     
    C.1    The Cauchy Criterion     
  Appendix D    An ITSM Tutorial     
    D.1    Getting Started     
    D.2 Preparing Your Data for Modelling
    D.3    Finding a Model for Your Data     
    D.4    Testing Your Model     
    D.4.3 Testing for Randomness of the Residuals     
    D.5    Prediction     
    D.6    Model Properties     
    D.6.4 Generating Realizations of a Random Series     
  Bibliography     
  Index     



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Time Series FORCASTING Brockwell rockwell forcast General Series 软件

cda_displayimage.jpg (22.38 KB)

cda_displayimage.jpg

Brockwell-Intro to Time Series and Forcasting.pdf
下载链接: https://bbs.pinggu.org/a-414750.html

2.35 MB

需要: 2 个论坛币  [购买]

solutions.PDF

264.44 KB

需要: 2 个论坛币  [购买]

itsm.rar

2.14 MB

需要: 2 个论坛币  [购买]

本附件包括:

  • itsm.hlp
  • Index of.doc
  • itsm.exe
  • ITSM.GID
  • Genvej til itsm.lnk
  • itsm2000.zip

数据.rar

80.46 KB

需要: 2 个论坛币  [购买]

本附件包括:

  • wine.tsm
  • appa.tsm
  • appb.tsm
  • appc.tsm
  • appd.tsm
  • appe.tsm
  • appf.tsm
  • appg.tsm
  • apph.tsm
  • appi.tsm
  • appj.tsm
  • appjk2.tsm
  • appk.tsm
  • ARCH.TSM
  • austres.tsm
  • beer.tsm
  • cdid.tsm
  • cdin.tsm
  • chaos.tsm
  • chocs.tsm
  • deaths.tsm
  • djao2.tsm
  • djaopc2.tsm
  • djaopcf2.tsm
  • dowj.tsm
  • e1021.tsm
  • E1032.TSM
  • e1042.tsm
  • e1062.tsm
  • e1321.tsm
  • e1331.tsm
  • e1332.tsm
  • E334.TSM
  • E611.TSM
  • E731A.TSM
  • E731B.TSM
  • E732.TSM
  • e911.tsm
  • e921.tsm
  • e923.tsm
  • e951.tsm
  • elec.tsm
  • finserv.tsm
  • gnfp.tsm
  • goals.tsm
  • imports.tsm
  • lake.tsm
  • lead.tsm
  • lres.tsm
  • ls2.tsm
  • lynx.tsm
  • NILE.TSM
  • oshorts.tsm
  • polio.tsm
  • respc.tsm
  • sales.tsm
  • SBL.TSM
  • SBL2.TSM
  • SBLD.TSM
  • SBLDIN.TSM
  • SBLIN.TSM
  • signal.tsm
  • sres.tsm
  • stock7.tsm
  • stocklg7.tsm
  • strikes.tsm
  • sunspots.tsm
  • trings.tsm
  • tundra.tsm
  • uspop.tsm
  • airpass.tsm

沙发
winning76(真实交易用户) 发表于 2009-10-7 23:52:30
nice!!!! Thanks!!!!!!!!!!!

藤椅
lupingfan1128(未真实交易用户) 发表于 2009-10-12 07:41:27
1# icapm

帅哥楼主降价
一块钱一个,你会赚的更多...

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-26 00:03