楼主: ReneeBK
4681 36

【GitHub】An Introduction to Statistical Learning with Applications in R [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4900份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49655 个
通用积分
55.9937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2017-7-24 00:16:24 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
This repository contains Python code for a selection of tables, figures and LAB sections from the book 'An Introduction to Statistical Learning with Applications in R' by James, Witten, Hastie, Tibshirani (2013).

2016-08-30:
Chapter 6: I included Ridge/Lasso regression code using the new python-glmnet library. This is a python wrapper for the Fortran library used in the R package glmnet.


Chapter 3 - Linear Regression
Chapter 4 - Classification
Chapter 5 - Resampling Methods
Chapter 6 - Linear Model Selection and Regularization
Chapter 7 - Moving Beyond Linearity
Chapter 8 - Tree-Based Methods
Chapter 9 - Support Vector Machines
Chapter 10 - Unsupervised Learning

Extra: Misclassification rate simulation - SVM and Logistic Regression

This great book gives a thorough introduction to the field of Statistical/Machine Learning. The book is available for download (see link below), but I think this is one of those books that is definitely worth buying. The book contains sections with applications in R based on public datasets available for download or which are part of the R-package ISLR. Furthermore, there is a Stanford University online course based on this book and taught by the authors (See course catalogue for current schedule).

Since Python is my language of choice for data analysis, I decided to try and do some of the calculations and plots in Jupyter Notebooks using:

  • pandas
  • numpy
  • scipy
  • scikit-learn
  • python-glmnet
  • statsmodels
  • patsy
  • matplotlib
  • seaborn

It was a good way to learn more about Machine Learning in Python by creating these notebooks. I created some of the figures/tables of the chapters and worked through some LAB sections. At certain points I realize that it may look like I tried too hard to make the output identical to the tables and R-plots in the book. But I did this to explore some details of the libraries mentioned above (mostly matplotlib and seaborn). Note that this repository is not a tutorial and that you probably should have a copy of the book to follow along. Suggestions for improvement and help with unsolved issues are welcome!

For an advanced treatment of these topics see Hastie et al. (2009)

References:

James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer Science+Business Media, New York. http://www-bcf.usc.edu/~gareth/ISL/index.html

Hastie, T., Tibshirani, R., Friedman, J. (2009). Elements of Statistical Learning, Second Edition, Springer Science+Business Media, New York. http://statweb.stanford.edu/~tibs/ElemStatLearn/

本帖隐藏的内容

https://github.com/JWarmenhoven/ISLR-python



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


本帖被以下文库推荐

沙发
Nicolle 学生认证  发表于 2017-7-24 01:21:13

8.1.1 Regression Trees

提示: 作者被禁止或删除 内容自动屏蔽

藤椅
Nicolle 学生认证  发表于 2017-7-24 01:24:17

8.1.2 Classification Trees

提示: 作者被禁止或删除 内容自动屏蔽

板凳
auirzxp 学生认证  发表于 2017-7-24 01:30:27
提示: 作者被禁止或删除 内容自动屏蔽

报纸
nicacc 在职认证  发表于 2017-7-24 05:55:04
thank you

地板
军旗飞扬 在职认证  发表于 2017-7-24 07:40:43
谢谢楼主分享!

7
h2h2 发表于 2017-7-24 08:40:08
谢谢分享

8
franky_sas 发表于 2017-7-24 08:45:52

9
ekscheng 发表于 2017-7-24 09:18:04

10
WFMZZ 发表于 2017-7-24 09:19:02

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-16 19:07