楼主: Studio-R
3717 7

人工智能推动生产力的未来——高盛报告:人工智能、机器学习和数据……(二) [推广有奖]

  • 5关注
  • 12粉丝

已卖:265份资源

教授

34%

还不是VIP/贵宾

-

威望
0
论坛币
37824 个
通用积分
2636.2859
学术水平
31 点
热心指数
30 点
信用等级
18 点
经验
26195 点
帖子
814
精华
1
在线时间
1402 小时
注册时间
2016-11-4
最后登录
2025-12-8

楼主
Studio-R 在职认证  发表于 2017-8-13 23:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

推动者正在沿着三个平面发展:DIY,服务和AI-aaS
如下面章节所述,我们开始看到领导者和投资出现在这三个平面:
1.自我实现 - 具有才能和差异化数据的企业可能在机器学习能力上大量投资。 为了支持这些努力,我们正在目睹一个新的“AI堆栈”的出现。 AI堆栈具有类似的组件:历史计算堆栈:硅,存储,基础设施软件,数据处理引擎,编程语言和工具。 因为通过下面,我们将发现AI堆栈的输入主要是开源(来自提供者)的组合,如Databricks,Cloudera,Hortonworks和Skymind)和服务提供云平台如微软,谷歌,亚马逊和百度。
2.咨询服务 - 许多组织将有独特的数据库为内部使用,以及为客户和合作伙伴构建AI服务。 因为AI人才是目前稀缺的资源,专业服务提供商正在出现以帮助弥合差距。 IBM,结合垂直和域特定服务专业知识以及其沃森集团内的技术专长。早期的领导者在这个市场。 较新的模型也正在出现。 Kaggle,作为示例,连接组织与成千上万的数据科学家,以帮助解决人工智能的相关问题。
3. AI-a-a-service(AI-aaS) - 在我们称为AI-aaS的类别里,我们看到很大的潜力和最新的市场创造。 AI-aaS很可能在多个方面有所发展,但核心思想是:深度学习系统,许多企业将改为接受经过培训的深度学习系统而不是培训自己。 AI-aaS的一个例子是用图像和谷歌API启动Clarifai。由于谷歌的大集合的图像和AI人才,公司不太可能能够训练图像识别模型比Google更准确。相反,开发人员使用图像应用程序中的识别将每次调用Vision API图像在应用程序中需要识别。类似的AI-aaS产品可能是由具有独特水平的SaaS供应商(如Salesforce.com)开发数据集(如销售数据),面向数据和人才的创业公司是稀缺的(医学成像是一个例子),和有公司可能对供应商,客户或合作伙伴有价值的差异化数据。
DIY:云平台和开源可能是人工智能的精选
机器学习(特别是深度学习)仍然处于创新者或者说是早期,市场的采用者细分市场与人工智能的快速进展相比。 基于与公司和VC在空间讨论,我们认为人工智能/机器学习被大量使用,由互联网公司,以行业为中心的服务提供商(如Broad研究所)和更大的财富500强组织的尾巴(新兴用例突出显示在我们的工业小插曲)。
今天采用方面的最大障碍是数据和人才。但是,随着企业的到来,更好地通过物联网的数据收集和内部生成机器,以及客户数据和外部数据服务提供商的数量增长,数据采用障碍可能变得不那么令人生畏。 另外,作为人工智能/机器学习,学习技能差距扩大,大学毕业生结合相关技能,通过人工智能/机器学习,人工智能/机器学习咨询公司的培训,以及使过程自动化的更好的工具,可能出现填补空白。这是网络,是我们相信大多数大型企业(或较小的,以数据为中心的企业)可能最终至少进行实验人工智能和深度学习。
由于在空间创新的步伐和技术发展的前景还不甚明朗,机器学习的渠道仍然非常分散。然而,新兴的“AI堆栈”与大型机,客户端服务器和当前时代分析中的分析具有相似之处和开发堆栈。正如下面“堆栈演化”图中所强调的那样栈的组件从工具到语言,到存储仍然存在于当下。
AI堆栈和现有技术变化之间的主要区别在于:大部分机器学习的渠道严重依赖由云平台供应商提供的开源技术和服务。 这种转变的驱动力是多重的,但包括按需计算和存储处理大量数据。微软,亚马逊和谷歌等云服务提供商的投资机器学习服务,以大开源为标准的开源,企业买家为了避免供应商锁定并降低成本。
编码的演变以及它如何翻译成AI
Blue =专有供应商,Orange =开源,Green =云服务(注意:一些供应商,如IBM和Microsoft包括专有和云服务

GPU重用的深度学习是我们当前“AI春天”的主要驱动因素之一。在人工智能/机器学习生态系统中,有两个主要应用程序确定神经网络的性能,每个神经网络需要不同的资源设置。 第一个是构建和使用训练算法。 训练算法利用大的(通常是更大,更好的)数据集来找到相关性并建立一个模型,该模型可以在给定新输入的情况下确定输出的概率。培训是非常资源密集型的,大多数现代培训是在GPU供电的系统上完成的。
一旦他们已经被训练,使用模型和算法被称为推断。推断需要少得多的计算能力,并且通常梳理通过更小的增量数据输入集。给定推断的单一目的性质,专门为该应用开发专用硅,称为FPGA(现场可编程门阵列)和ASIC(专用集成电路)。这种类型的集成电路最初是为原型CPU开发的,但是越来越多地被用于人工智能的推理。Google的Tensor处理单元是专为人工智能和机器学习专门构建的ASIC的一个示例。 微软也一直在使用FPGA芯片进行推理。 I英特尔于2015年收购了FPGA制造商Altera,因为到2020年,三分之一的数据中心可以利用FPGA实现特殊用途。
公司看点:NVIDIA,Xilinx,Google,Intel(通过Nervana)

鉴于在内部和内部建立真正的AI或ML能力的成本 ,以及来自公共云提供商的改进选项,我们认为相对较少的企业将选择构建内部部署解决方案。这为Databricks(在云中提供Spark以及支持机器学习过程的一些工具)以及主要云平台提供商等提供商创建了一个开放环境。
来自主要平台提供商的产品具有可比性,但存在一些关键差异,一个解决方案或另一个更适用于特定的使用情况。尽管有许多供应商提供基于GPU的云产品,但我们的分析集中在那些具有最大扩展能力的产品,以及那些在与用户的对话中被频繁引用的产品。除了下面讨论的内容,Nvidia还列出了其GPU云计算合作伙伴:Aliyun,Outscale,Peer 1 Hosting,Penguin Computing,RapidSwitch,Rescale和IBM SoftLayer。
亚马逊AWS。亚马逊的P2似乎(至少是在纸上)最主要的公共云提供商提供的最强大的基于GPU的实例。 最大的包括64个CPU核心,16个Tesla K80 GPU,732 GiB内存,预留实例价格为6.80美元/小时。P2.16xlarge包括我们可以找到的最近的竞争对手提供的4倍的GPU。除了原始实例,AWS还提供Amazon Machine Learning,一种用于生成ML模型并在云中执行训练和推理功能的托管服务。亚马逊ML包括AWS集成,数据可视化,模型评估和解释工具,建模API,常用用例的预构建算法,数据转换和用于批处理和实时预测的API。
微软Azure。微软推出了新的N系列作为其最强大的基于GPU的实例。虽然目前只提供预览,广告内容包括24核,4 Nvidia Tesla K80 GPU,224 GB的内存和1.4TB SSD磁盘。定价范围大致取决于所选择的操作系统,从2.25美金每小时的Linux到11.66美金每小时的SQL Server。 Azure机器学习也被作为Cortana智力的保护下的管理服务营销套件,具有类似于AWS的功能和工具。
Google云端平台(GCP)。Google目前正在针对Cloud ML产品推出测试版。 尽管技术规格不像Azure或AWS中的实例那样容易公布,但我们的客户对话表明Google的平台(如果不是特别是Cloud ML实例)是高度先进的,为机器学习和人工智能使用提供了一个引人注目的平台。 Google利用其与DeepMind合作的技术及其在TensorFlow中的专业技术,提供全面的横向解决方案,如图像识别和翻译解决方案。
阿里巴巴。2016年1月,阿里巴巴的AliCloud宣布与Nvidia合作,推出中国第一个GPU加速的基于云的平台。更多详细信息缺乏,虽然公司和Nvidia都承认这种伙伴关系,并将使用Nvidia的Tesla K80 GPU。
图16:多个云供应商已经针对使用GPU加速的机器学习应用程序引入了实例
来自Amazon AWS和Microsoft Azure的人工智能/机器学习优化实例的技术规格和定价

特别是对于深度学习,大量的数据提高了机器学习模型的性能。许多行业的数据增长已经达到了拐点。 例如,在计算生物学中,今天的可用数据量据Broad研究所估计为200帕比特以上,并且比消费者网络数据增长得更快。 Petabyte规模数据通常在以下两种环境之一中进行评分:Hadoop集群(在HDFS中)或云对象存储服务(如Amazon S3)。诸如戴尔EMC部门(例如Isilon)等供应商的横向扩展存储解决方案也可能在某些环境中使用。但是,我们认为开源或基于云的存储服务可能会捕获创建的大量增量数据。 这主要是由于这些选项相对于本地专有备选方案的低成本以及在云中灵活地扩展和缩小使用的能力。
公司看点:Cloudera,Hortonworks,MapR,亚马逊(S3),谷歌(谷歌云存储),微软,IBM(云对象存储),戴尔/ EMC(Isilon,云对象存储)

消息,流处理和数据转换是机器学习管道的关键组件。训练模型时,在准备并馈送到神经网络或其他机器学习框架之前,将数据流传输到存储系统中。一旦创建了模型,来自传感器,网络或其他来源的“实时”数据被流式传输并准备好由模型进行分析,然后实时分析数据(图17)。历史上,ETL供应商(例如Informatica和IBM)和消息传递供应商(例如TIBCO)是流和流处理技术的提供者。 在过去五年里,情况发生了变化。在我们研究期间观察到的大多数机器学习环境中,开源解决方案(如Kafka,Storm和Spark)得到了大量使用。此外,还使用了诸如Amazon Kinesis和Google Pub/Sub之类的消息传递服务。
即使对于神经网络,数据需要准备。 例如,图像和文本被标准化为相同的大小和颜色(图像)或格式(文本)。 对于这些任务,可以编写自定义代码,或者可以使用Skyminds的DataVec等工具。
公司看点:Confluent(卡夫卡)、Databricks(Spark),Cloudera(火花流),Hortonworks(风暴,Spark Streaming)、亚马逊(运动),谷歌(云DataFlow)、Skymind(datavec),IBM(流)、微软(Azure数据流)。
图17:机器学习在生产中各种开源技术和云技术的应用管道

数据库/数据处理市场历来是最大和最有利可图的软件之一。例如,2015年,Gartner估计数据库市场规模为359亿美元。标准普尔(OCL)中规模最大的公司之一(市值大于1600亿美元)从其数据库产品中获得了大部分利润。在人工智能中,正在使用一组新的技术。首先,神经网络已经成为关键的数据处理技术。正如我们在“什么是人工智能”部分中解释的,神经网络通过节点处理输入数据以创建输出。例如,输入可能是电子邮件或图像,输出可能是“垃圾邮件”或“cat”。 到目前为止,神经网络的创建主要是通过使用各种框架(如Google TensorFlow或Caffe)的定制开发。云服务,如谷歌云机器学习也涌现,使开发人员和数据科学家能够在云中构建神经网络。
Spark作为处理技术的使用是我们与风险投资公司和公司讨论中的一个常见主题。Spark仍然是增长最快的开源项目之一(目前拥有超过10万个Github的明星),并且已经收到了来自IBM,Cloudera,Hortonworks和Databricks(其中有大部分是项目提交者)的大量投资。
公司看点:Cloudera(Spark)、Hortonworks(Spark),Databricks(Databricks),谷歌(谷歌云机学习),微软(Azure机器学习),Amazon(亚马逊机器学习),IBM(沃森)

人工智能和机器学习仍处于早期阶段。 这意味着定制开发仍然是创建生产应用程序和工作流的主要途径。机器学习和数据科学的语言是Python和R. python还没有被货币化。在R生态系统中,微软(收购了Revolution Analytics)和RStudio(开源提供商)是主要的供应商。
图18:机器学习管道的主要开源项目

支持公司和适用性风险投资适用的项目

在分析的历史中,出现了工具,使企业能够从数据中提取价值,而不依赖于定制开发。 高级统计工具(如SAS研究所和SPSS),BI解决方案(如Microstrategy和Business Objects),报告解决方案(例如Crystal Reports)以及最近的数据可视化提供商(如Tableau)已经通过提高业务分析师的生产力, 供支持商业用途的数据科学家使用。
机器学习工具开始出现,加速了数据科学家的生产力。一个例子是微软的Azure机器学习解决方案,它为数据科学家创建一个拖放界面来创建机器学习工作流程。来自SAS的数据科学家关注的工具还提供工具,以支持开发和部署各种机器学习库。
公司看点:SAS(SAS Enterprise Miner)、画面、微软(Azure机器学习),亚马逊(亚马逊机器学习),谷歌(云机学习),Databricks。
咨询服务:货币化的技能差距
正如我们在本报告中提到的,人才仍然是机器学习采用的主要障碍之一。这创造了系统集成商的重大机会,如IBM、埃森哲和德勤。应用机器学习也提供了传统的技术供应商和大型咨询企业的机会(如IBM或者Teradata),去更有效地利用开源技术(通过咨询解决方案)。
在下面的图19中,我们描绘了机器学习人才的竞争。IBM,华为,埃森哲和德勤是最积极地雇用机器学习人才的公司。值得注意的是,由于机器学习人才仍然稀缺,较小的初创咨询公司很可能实现规模化。 在云计算中出现了类似的模式,出现了较小的咨询公司,如Appirio,Bluewolf和Fruition Partners(最终被大型IT咨询提供商收购)。
图19:IT服务提供商的机器学习招聘
LinkedIn招聘与“机器学习”

其他业务模式也正在出现,以缩小技能差距。 作为一个例子,Kaggle通过托管比赛来实现机器学习。数据科学家可以赢得奖金,练习“真实世界”数据集,构建机器学习组合。企业能够获得人才来解决问题,而不必大量投资于机器学习团队。
AI-aas:可能是创造新市场的最大驱动力
虽然我们预计许多公司将投资于DIY的人工智能,创造增长,我们看到在AI-aaS最有活力和新业务创造的潜力。 因为大型,独特的数据集是相对有限的,稀缺的人工智能人才可能合并到这样的数据集,在我们看来,这似乎不太可能,大量的企业在五年内建立自己的神经网络。 我们认为更可能的情况是,大量的AI服务提供商出现:1)可以访问唯一的数据集; 2)由于访问独特的数据集,吸引了创造人工智能服务增值服务所必需的人才。
AI-aaS产品通常通过API提供。 最基本的例子是一个开发者想要添加图像识别功能到其应用程序。开发者不是通过水平AI-aaS提供者(例如Clarifai,Google或Microsoft)访问Image API,而是获取大量数据集的图像并训练模型。当在应用中使用语音识别时,对云中的API进行调用,并且通过训练的机器学习模型来对图像进行分类。
图20:ai-as-a-service(AI-AAS)景观
机器学习API正在开发以解决水平和垂直用例

我们看到AI-aaS的市场至少沿着三个方面发展,如下面强调的和上面的图表20所示。
广泛的水平AI-aaS(图像,语音,文本等)
谷歌和微软都提供用于语音,翻译和图片识别的API,每月每千次API调用只需0.25美元(图21)。开发人员可以利用这些API将AI功能嵌入到他们的应用程序中。对于核心水平AI(如NLP和图像识别),我们认为大型云平台提供商处于最佳位置,因为他们拥有大数据集,能够实现更准确的AI服务,并能够根据实际消费者数十亿用户来优化其结果。
公司看点:谷歌,微软手表,脸谱网,IBM,Amazon,Clarifai,it.ai,Valossa
图21:水平AI-AAS产品的供给定价
云平台的AI AAS产品样本

狭义的AI-AAS(客户流失,员工保留等)
对于更重要的水平,如CRM(领先评分),人力资源(人才保留)和制造(预测性维护),我们认为SaaS供应商定位良好,因为SaaS供应商可以获得大量的差异化数据。Workday,Salesforce.com,Zendesk,Oracle,SAP和IBM是最终可以竞争狭义AI-aaS用例的供应商。我们谈到的大多数SaaS供应商都投资于数据基准测试和分析产品,认为他们的数据是长期进入的壁垒。
Salesforce已经成为机器学习人才最积极的收购者,在过去18个月发生4项人工智能相关收购(图5)。
公司看点:IBM、SAP、oracle、Salesforce、Workday,Zendesk,HubSpot,Shopify,Ultimate Software,ServiceNow
垂直特异AI-AAS(医疗成像,欺诈预测,天气预报等)
垂直特定的AI即服务可能推动更多的多样性。大型行业巨头可以汇总数据,构建机器学习模型,并向合作伙伴,客户和供应商销售模型。初创公司可以在特定用例的垂直领域(如医疗成像)构建独特的数据集,并使医院网络能够访问API。零售或广告领域的行业联盟可以汇集数据,以更好地与更大的竞争对手竞争(例如,零售商可以汇集数据,更好地与亚马逊的推荐引擎竞争)。
IBM一直是医疗保健领域开发垂直特定AI-aaS能力的早期领导者。在过去两年里,IBM已经花费超过40亿美元收购了一些医疗保健技术和数据公司。 这些收购的结果是大量的医疗保健数据(IBM在其健康云中有超过3亿患者记录)。 通过这些医疗保健数据(以及通过合作伙伴收集的其他数据)及其收集的沃森技术,IBM开始提供针对肿瘤学,临床试验和基因组学使用案例的服务。 在医疗保健垂直行业,其他创业公司也采用类似的方法(如下面的图22所示)来解决医学成像,药物发现和诊断中的难点。
图22:医疗保健中的垂直AI-aaS


连载(共7篇)下一篇:

中国人工智能的现状 ——高盛报告:人工智能、机器学习和数据……(三)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


[url=https://edu.cda.cn/page/110][/url]

沙发
军旗飞扬 在职认证  发表于 2017-8-14 06:23:33
谢谢楼主分享!

藤椅
labixiaohong 发表于 2017-8-23 18:10:39
有外文的吗?

板凳
Studio-R 在职认证  发表于 2017-8-23 19:18:00
labixiaohong 发表于 2017-8-23 18:10
有外文的吗?
抱歉,暂时没有

报纸
labixiaohong 发表于 2017-8-23 19:34:10
Studio-R 发表于 2017-8-23 19:18
抱歉,暂时没有
您好!我想问一下,想这种外文的高端研报一般哪里可以看?彭博?

地板
Studio-R 在职认证  发表于 2017-8-23 19:52:52
labixiaohong 发表于 2017-8-23 19:34
您好!我想问一下,想这种外文的高端研报一般哪里可以看?彭博?
国外咨询公司网站都有

7
labixiaohong 发表于 2017-8-23 19:57:17
哦哦,好的。MBB?

8
douwenyang 发表于 2018-7-15 14:30:16
请问这个报告怎么下载全文?含图片的

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-11 12:43