楼主: Lisrelchen
1181 5

[Github]Apache Spark for Java Developers [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2017-8-22 08:16:20 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Apache Spark for Java Developers


本帖隐藏的内容

https://github.com/PacktPublishing/Apache-Spark-2x-for-Java-Developers


This is the code repository for Apache Spark for Java Developers, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

About the Book

Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone.

The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages.

By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications.

Instructions and Navigation

All of the code is organized into folders. Each folder starts with a number followed by the application name. For example, Chapter02.

Chapter wise code files are placed inside the following folder:

The code will look like the following:

Any command-line input or output is written as follows: "\src\main\java\com\packt\sfjd"

SparkConf conf =new SparkConf().setMaster("local").setAppName("Local Filesystem Example");JavaSparkContext jsc=new JavaSparkContext(conf);

If you want to set up Spark on your local machine, then you can follow the instructions mentioned in Chapter 3, Let Us Spark.

Related Products
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Apache Spark Developers developer Develop apache

本帖被以下文库推荐

沙发
西门高 发表于 2017-8-22 08:41:21
谢谢分享

藤椅
MouJack007 发表于 2017-8-22 09:05:13
谢谢楼主分享!

板凳
MouJack007 发表于 2017-8-22 09:05:31

报纸
redliwu 发表于 2017-9-7 22:00:40
谢谢分享

地板
yourweily 发表于 2017-9-8 11:20:53
thank you sir

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-2 20:47