楼主: ReneeBK
1659 9

深度强化学习面临的挑战与建议 [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.6937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2017-9-24 22:40:33 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
  1. In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to maintaining this rapid progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results difficult to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines, and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field, by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.
复制代码

本帖隐藏的内容

深度强化学习面临的挑战与建议.pdf (1.08 MB)

  1. 近年来,深度强化学习(RL)被用于解决很多领域中的难题,并取得了令人瞩目的成绩。为了保持快速发展的局面,复现(Reproducing)已有的研究并准确评估新方法所带来的进步是很重要的。可惜,顶尖的深度强化学习方法很少能被简单的复现。尤其是,标准基准环境中的不确定性和不同方法之间的内在差异导致研究中的结果难以理解。如果实验过程缺乏显著性的度量和严格的标准化,则我们很难确定先前顶尖技术取得的进展是否有意义。在这篇论文中,我们研究了复现实验所面临的挑战、合适的实验技巧和报告流程。通过与常见基准进行对比,我们阐释了报告中度量方法和结果的可变性,同时提出了使深度强化学习未来的研究成果更易复现的指南。我们希望减小研究人员在不可复现和易误解的结果上花费精力,并引起大家对如何使该领域持续发展进行讨论。
复制代码

本帖隐藏的内容

Deep Reinforcement Learning that Matters.pdf (8.38 MB)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Experimental Improvements significance Environments IMPROVEMENT

本帖被以下文库推荐

沙发
flying_256 发表于 2017-9-24 22:57:27
kankan

藤椅
MouJack007 发表于 2017-9-24 23:05:33
谢谢楼主分享!

板凳
MouJack007 发表于 2017-9-24 23:08:12

报纸
钱学森64 发表于 2017-9-24 23:13:49
谢谢分享

地板
fengyg 企业认证  发表于 2017-9-25 06:42:58
kankan

7
ShannonACCA 发表于 2017-9-25 07:07:10
Interesting topic, would like to learn more.

8
franky_sas 发表于 2017-9-25 08:17:20

9
WFMZZ 发表于 2017-9-25 11:56:02

10
mike68097 发表于 2017-9-25 21:08:25

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-21 23:23