一,二参数模型定义
这个方程表示一族由参数b和a所定义的个体曲线,因此称为二参数模型.
二,数值计算
b = 1.0 :the item difficulty parameter
a = 0.5 : the item discrimination parameter
[LaTex]\theta \in [-3,3][/LaTex] : performed at the ability level:
计算结果如下:
图形展示为:
三,R语言代码实践
PL=function(a,b){
theta <- seq(-3, 3, 1)
L <- a * (theta - b)
P <- 1 / (1 + exp(-L))
x1 <- cbind(theta,L)
x2 <- cbind(x1,exp(-L))
x3 <- cbind(x2,1 + exp(-L))
result <- cbind(x3,P)
colnames(result) <-c("ability,theta","logit,L","exp(-L)","1+exp(-L)","p(theta)")
plot(theta,P,type = "l",xlab="Ability", ylab="Probability of Correct Response")
abline(v=1,col=c("blue"),lty=1,lwd=1)
return(result)
}
PL(0.5,1)
结果如下:
ability,theta logit,L exp(-L) 1+exp(-L) p(theta)
[1,] -3 -2.0 7.3890561 8.389056 0.1192029
[2,] -2 -1.5 4.4816891 5.481689 0.1824255
[3,] -1 -1.0 2.7182818 3.718282 0.2689414
[4,] 0 -0.5 1.6487213 2.648721 0.3775407
[5,] 1 0.0 1.0000000 2.000000 0.5000000
[6,] 2 0.5 0.6065307 1.606531 0.6224593
[7,] 3 1.0 0.3678794 1.367879 0.7310586



雷达卡











京公网安备 11010802022788号







