2098 19

[交易策略] 【股票数据模式识别】Pattern Recognition in Stock Data [推广有奖]

• 1关注
• 2粉丝

1%

-

0

3336 个

1.0000

3 点

3 点

3 点

1452 点

54

0

57 小时

2005-8-28

2019-8-12

yujun1214 发表于 2018-1-27 17:31:10 |显示全部楼层
 本帖最后由 yujun1214 于 2018-1-27 17:59 编辑 2017 Pattern Recognition in Stock Data Kathryn Dover Harvey Mudd College Abstract iii Acknowledgments xi 1  Introduction 1 2  Background 3 2.1  Methods for Pattern Recognition in Stock Data . . . . . . . . 3 2.2  StockPatterns ........................... 7 2.3  ProposedChangeinApproach ................. 10 3  Approach: Geometric Definition of Patterns 11 3.1 TheStandardW.......................... 11 3.2 TheStandardM.......................... 12 3.3 TheStandardHeadandShoulder................ 13 4  Approach: Geometric Definition of Fuzzy Shapes 15 4.1 TheFuzzyW............................ 15 4.2 TheFuzzyM............................ 16 4.3 TheFuzzyHeadandShoulder ................. 17 5  Results: New Approach on Handling the Shapes 19 5.1  ChangeofBasis .......................... 19 5.2  FlippingaShape ......................... 20 5.3  SymmetricRepresentation.................... 21 5.4  FuzzySymmetry ......................... 21 5.5  Categorizing Shapes Using Slopes and Lengths . . . . . . . . 22 5.6  RoughPredictions......................... 23 6  Implementation: Creating an Algorithm to Find Patterns 27 6.1 GaussianProcess ......................... 27 6.2 FindingLocalExtrema ...................... 29 6.3 CreatingVectorsUsingEndPoints ............... 29 6.4 StoringInformationforthePrediction . . . . . . . . . . . . . 29 6.5 RunningtheAlgorithmontheData .............. 29 7  Results: Running the Algorithm on Real Data 33 7.1 Results ............................... 33 7.2 Predictions............................. 36 7.3 PotentialIssues .......................... 40 8 Conclusion 45 8.1 FutureWork............................ 45 8.2 ClosingThoughts......................... 48 Bibliography 49   Abstract Finding patterns in high dimensional data can be difficult because it cannot be easily visualized. Many different machine learning methods are able to fit this high dimensional data in order to predict and classify future data but there is typically a large expense on having the machine learn the fit for a certain part of the dataset. This thesis proposes a geometric way of defining different patterns in data that is invariant under size and rotation so it is not so dependent on the input data. Using a Gaussian Process, the pattern is found within stock market data and predictions are made from it. Pattern Recognition in Stock Data.pdf (869.28 KB, 售价: 10 个论坛币) 2018-1-27 17:25:11 上传 Pattern Recognition in Stock Data 售价: 10 个论坛币 .custom_tag{background:none; padding-left:0;} .custom_tag a{text-decoration:none; margin-right:7px;} .custom_tag a:hover{text-decoration:underline;} .custom_tag i{display: inline-block;width: 60px;}

accumulation + 100 + 1 + 1 + 1 精彩帖子
xugonglei + 100 精彩帖子
xujingtang + 60 奖励积极上传好的资料

本帖被以下文库推荐

jjxm20060807 发表于 2018-1-27 18:07:28 |显示全部楼层
 谢谢分享

shzhy1989   发表于 2018-1-27 21:41:27 |显示全部楼层
 谢谢分享

xujingtang 发表于 2018-1-27 22:19:22 |显示全部楼层

 谢谢分享

shicweixin 发表于 2018-1-30 18:17:25 |显示全部楼层
 谢谢楼主分享。

yujun1214 发表于 2018-2-2 14:03:38 |显示全部楼层