楼主: pengming
438 3

[学科前沿] 机器学习python实践-2018-首发 [推广有奖]

  • 6关注
  • 27粉丝

已卖:11430份资源

学科带头人

4%

还不是VIP/贵宾

-

威望
0
论坛币
175072 个
通用积分
280.4945
学术水平
66 点
热心指数
79 点
信用等级
76 点
经验
36544 点
帖子
466
精华
0
在线时间
3066 小时
注册时间
2006-1-8
最后登录
2026-2-1

楼主
pengming 在职认证  发表于 2018-3-31 16:27:21 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

第一部分 初始

1 初识机器学习 2

1.1 学习机器学习的误区 2

1.2 什么是机器学习 3

1.3 Python 中的机器学习 3

1.4 学习机器学习的原则 5

1.5 学习机器学习的技巧 5

1.6 这本书不涵盖以下内容 6

1.7 代码说明 6

1.8 总结 6


2 Python 机器学习的生态圈 7

2.1 Python 7

2.2 SciPy 9

2.3 scikit-learn 9

2.4 环境安装 10

2.5 总结 12


3 第一个机器学习项目 13

3.1 机器学习中的 Hello World 项目 13

3.2 导入数据 14

3.3 概述数据 15

3.4 数据可视化 18

3.5 评估算法 20

3.6 实施预测 23

3.7 总结 24


4 Python 和 SciPy 速成 25

4.1 Python 速成 25

4.2 NumPy 速成 34

4.3 Matplotlib 速成 36

4.4 Pandas 速成 39

4.5 总结 41


第二部分 数据理解


5 数据导入 44

5.1 CSV 文件 44

5.2 Pima Indians 数据集 45

5.3 采用标准 Python 类库导入数据 46

5.4 采用 NumPy 导入数据 46

5.5 采用 Pandas 导入数据 47

5.6 总结 47


6 数据理解 48

6.1 简单地查看数据 48

6.2 数据的维度 49

6.3 数据属性和类型 50

6.4 描述性统计 50

6.5 数据分组分布(适用于分类算法) 51

6.6 数据属性的相关性 52

6.7 数据的分布分析 53

6.8 总结 54


7 数据可视化 55

7.1 单一图表 55

7.2 多重图表 58

7.3 总结 61


第三部分 数据准备


8 数据预处理 64

8.1 为什么需要数据预处理 64

8.2 格式化数据 65

8.3 调整数据尺度 65

8.4 正态化数据 67

8.5 标准化数据 68

8.6 二值数据 69

8.7 总结 70


9 数据特征选定 71

9.1 特征选定 72

9.2 单变量特征选定 72

9.3 递归特征消除 73

9.4 主要成分分析 75

9.5 特征重要性 76

9.6 总结 76


第四部分 选择模型


10 评估算法 78

10.1 评估算法的方法 78

10.2 分离训练数据集和评估数据集 79

10.3 K 折交叉验证分离 80

10.4 弃一交叉验证分离 81

10.5 重复随机分离评估数据集与训练数据集 82

10.6 总结 83


11 算法评估矩阵 85

11.1 算法评估矩阵 85

11.2 分类算法矩阵 86

11.3 回归算法矩阵 93

11.4 总结 96


12 审查分类算法 97

12.1 算法审查 97

12.2 算法概述 98

12.3 线性算法 98

12.4 非线性算法 101

12.5 总结 105


13 审查回归算法 106

13.1 算法概述 106

13.2 线性算法 107

13.3 非线性算法 111

13.4 总结 113


14 算法比较 115

14.1 选择最佳的机器学习算法 115

14.2 机器学习算法的比较 116

14.3 总结 118


15 自动流程 119

15.1 机器学习的自动流程 119

15.2 数据准备和生成模型的 Pipeline 120

15.3 特征选择和生成模型的 Pipeline 121

15.4 总结 122


第五部分 优化模型


16 集成算法 124

16.1 集成的方法 124

16.2 装袋算法 125

16.3 提升算法 129

16.4 投票算法 131

16.5 总结 132


17 算法调参 133

17.1 机器学习算法调参 133

17.2 网格搜索优化参数 134

17.3 随机搜索优化参数 135

17.4 总结 136


第六部分 结果部署


18 持久化加载模型 138

18.1 通过 pickle 序列化和反序列化机器学习的模型 138

18.2 通过 joblib 序列化和反序列化机器学习的模型 140

18.3 生成模型的技巧 141

18.4 总结 141


第七部分 项目实践


19 预测模型项目模板 144

19.1 在项目中实践机器学习 145

19.2 机器学习项目的 Python 模板 145

19.3 各步骤的详细说明 146

19.4 使用模板的小技巧 148

19.5 总结 149


20 回归项目实例 150

20.1 定义问题 150

20.2 导入数据 151

20.3 理解数据 152

20.4 数据可视化 155

20.5 分离评估数据集 159

20.6 评估算法 160

20.7 调参改善算法 164

20.8 集成算法 165

20.9 集成算法调参 167

20.10 确定最终模型 168

20.11 总结 169


21 二分类实例 170


22 文本分类实例 192



机器学习python实践部分3.pdf (62.01 MB)


机器学习python实践部分2.pdf (70.14 MB)


机器学习python实践_部分1.pdf (63.7 MB)


data: 机器学习python实践.zip (21.98 MB)


资源下载:http://www.broadview.com.cn/book/5195

书籍这里购买:https://item.jd.com/12252293.html



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


本帖被以下文库推荐

沙发
GKINGLIU 在职认证  发表于 2018-4-1 00:38:10

藤椅
dgdgmariner 在职认证  发表于 2018-4-1 18:54:39
质量太差了

板凳
pengming 在职认证  发表于 2018-4-2 07:24:23
扫描文件,一张放2页,没有深度处理,学习应该是没有问题的,本人觉得此书非常好,才上传。如果不需要此书的,千万不要下载。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-2-7 19:15