黃河泉 发表于 2018-5-1 16:16 
奇怪了,我试了都没问题 (你也试一下)。
老师,您好,请问我使用了您这个原始数据代码可以得到 识别不足 等检验结果,但用自己的数据做工具变量回归时就不会显示这些结果呢
ivregress 2sls shangzhicxrh grpduishu renjungrp cpi shequ keyun i.year i.code (shuzijingji=gong
> ju) ,r first
First-stage regressions
-----------------------
Number of obs = 70
F(21, 48) = 45.79
Prob > F = 0.0000
R-squared = 0.9186
Adj R-squared = 0.8829
Root MSE = 0.0482
---------------------------------------------------------------------------------
| Robust
shuzijingjizh~u | Coefficient std. err. t P>|t| [95% conf. interval]
----------------+----------------------------------------------------------------
grpduishu | -.0578206 .0691644 -0.84 0.407 -.1968849 .0812437
renjungrp | -9.24e-07 7.16e-07 -1.29 0.203 -2.36e-06 5.15e-07
cpi | .014552 .0107174 1.36 0.181 -.0069967 .0361008
shequ | .0000281 .000092 0.31 0.761 -.0001568 .000213
keyun | -7.62e-07 8.68e-07 -0.88 0.384 -2.51e-06 9.83e-07
|
year |
2014 | .0490418 .0238744 2.05 0.045 .0010391 .0970446
2015 | .0767599 .0253209 3.03 0.004 .0258488 .127671
2016 | .1119565 .0291993 3.83 0.000 .0532474 .1706656
2017 | .1165454 .0334981 3.48 0.001 .049193 .1838979
2018 | .1954376 .0360533 5.42 0.000 .1229476 .2679276
2019 | .2663214 .0419712 6.35 0.000 .1819326 .3507101
2020 | .3478126 .0440673 7.89 0.000 .2592095 .4364158
2021 | .2306333 .0531789 4.34 0.000 .1237099 .3375566
2022 | .2395223 .0497993 4.81 0.000 .139394 .3396505
|
code |
2 | .0251238 .0498542 0.50 0.617 -.0751147 .1253624
3 | -.1430153 .0409603 -3.49 0.001 -.2253715 -.0606591
4 | -.1237437 .1399938 -0.88 0.381 -.4052201 .1577328
5 | -.1515676 .1530394 -0.99 0.327 -.4592738 .1561387
7 | -.1562863 .0547471 -2.85 0.006 -.2663628 -.0462098
8 | -.0635687 .0480906 -1.32 0.192 -.1602613 .033124
|
gongjubianliang | 1.06e-06 5.86e-07 1.82 0.076 -1.14e-07 2.24e-06
_cons | -.785816 1.33629 -0.59 0.559 -3.472607 1.900975
---------------------------------------------------------------------------------
Instrumental variables 2SLS regression Number of obs = 70
Wald chi2(21) = 1923.15
Prob > chi2 = 0.0000
R-squared = 0.9584
Root MSE = .0263
-----------------------------------------------------------------------------------
| Robust
shangzhicxrh | Coefficient std. err. z P>|z| [95% conf. interval]
------------------+----------------------------------------------------------------
shuzijingjizhishu | .2444346 .2872948 0.85 0.395 -.3186529 .8075221
grpduishu | .0624645 .0503203 1.24 0.214 -.0361614 .1610904
renjungrp | -2.21e-07 3.42e-07 -0.65 0.517 -8.91e-07 4.48e-07
cpi | .0048327 .006994 0.69 0.490 -.0088752 .0185407
shequ | .0001126 .0000467 2.41 0.016 .0000211 .0002042
keyun | 1.06e-06 7.18e-07 1.48 0.139 -3.45e-07 2.47e-06
|
year |
2014 | .0132133 .0191165 0.69 0.489 -.0242543 .050681
2015 | -.0227431 .0328115 -0.69 0.488 -.0870525 .0415663
2016 | -.0234324 .0446704 -0.52 0.600 -.1109848 .06412
2017 | -.0540701 .05135 -1.05 0.292 -.1547142 .046574
2018 | -.0758195 .0776714 -0.98 0.329 -.2280525 .0764136
2019 | .2769308 .0964201 2.87 0.004 .0879507 .4659108
2020 | -.1204645 .12107 -0.99 0.320 -.3577573 .1168284
2021 | -.0649956 .0929109 -0.70 0.484 -.2470977 .1171064
2022 | -.0894111 .0955557 -0.94 0.349 -.2766968 .0978746
|
code |
2 | -.0221402 .0154364 -1.43 0.151 -.0523949 .0081146
3 | -.0078821 .0490236 -0.16 0.872 -.1039667 .0882025
4 | .1736486 .1304133 1.33 0.183 -.0819568 .4292541
5 | .092869 .1436399 0.65 0.518 -.1886602 .3743981
7 | .086805 .0563703 1.54 0.124 -.0236788 .1972888
8 | -.0716005 .0123701 -5.79 0.000 -.0958454 -.0473556
|
_cons | -.9534107 .6106203 -1.56 0.118 -2.150204 .243383
-----------------------------------------------------------------------------------
Instrumented: shuzijingjizhishu
Instruments: grpduishu renjungrp cpi shequ keyun 2014.year 2015.year 2016.year
2017.year 2018.year 2019.year 2020.year 2021.year 2022.year 2.code
3.code 4.code 5.code 7.code 8.code gongjubianliang
.
end of do-file