国内外的经济应用数学、金融学、工程经济学、财务管理、衍生工具等教材中都讲所谓“连续复利”,但是这种连续复利根本没有“连续”起来。天下教材一大抄,老师们就这样错误着教,学生们也就这样错误着学。我们可从多个方面分析连续复利的错误,这里我们仅看一看,所谓连续复利“连续”了没有?根本没有“连续”!
连续复利公式的推导是,设有本金A。,年利率为 r ,则 t 年的本利和就是
A= A。(1+r)^t (1)
将一年分成m次计算,一年中结算m次,每次利率取为r/m, 即得所谓复利分期计算公式
Am= A。(1+r/m)^(mt) (2)
再令m→∞,得出连续复利公式 A= A。e^(rt) (3)
我们注意,(1)式 A= A。(1+r)^t 是不连续计算公式,是所谓离散的计算公式,(1)式中的 t 只取整数,但从(1)式到(2)式,再到(3)的推导中,只是把一年中的计息次数 m看作变量,其余的量都没有变,就是说,其余字母A。 r t 都是作常数考虑的,从(1)式到(2)式,再到(3)的推导中,一点也没有改变时间变量 t 的属性,也就是说,在(1)式、(2)式和(3)中 t 都只取整数,在(3)中,时间变量只取整数,这样的计算实现了连续计算了没有啊?根本没有连续起来。


雷达卡



京公网安备 11010802022788号







