人工智能的第三波浪潮是由基础设施、技术融合与应用拓展共同推动的。
(1)基础设施领域的进步
在基础设施领域,最核心的进步便是运算能力的提升以及数据资源的积累。运算能力方面,在过去将近50年的时间里,集成电路上元器件的数目持续的以几何级数增长。即便当前传统计算机性能提升已经进入瓶颈期,互联网基础设施的提升又使得云计算成为可能,把大量的计算资源组成资源池并用于动态创建高度虚拟化的资源供用户使用。云计算大大降低了人工智能的商业化运营成本,推动了人工智能的进步。
此外,GPU的广泛应用使得大规模并行计算的效率大幅提升,这也为人工智能的多任务执行提供了基础。
基础设施领域的另一个大的进步便是海量数据资源的积累。海量的数据使得机器学习的效果大幅提升,并且数据量本身的增加还能够弥补算法上的缺陷。根据IDC的统计,全球数据总量在未来的增速惊人,预计到2020年全球总数据量大约达到35ZB,是2011年的将近20倍。
(2)技术融合
人工智能是处于技术前沿的各学科融合并共同推进的领域。人工智能的开发也越来越多地将数学、系统控制、经济等领域的知识结合起来,最常用的基础工具包括贝叶斯网络、隐式马尔科夫链、信息理论、随机建模、神经网络、动态优化以及近期因谷歌的Alpha Go而闻名的蒙特卡洛树搜索。跨学科的技术融合在人工智能基础设施上表现的更为重要。
例如,在计算领域,传统的电路只能实现0或1的存储你,集成芯片或是云计算最终都是由无数个基本电路组成的,难逃“能耗”的问题,势必需要一个能够在计算能力上产生质的飞跃的设计。量子计算机在理论上能够解决这一问题,一个量子可以呈现多态,那么大规模计算所需要的量子数就大大缩减。不过,根据海森堡不确定原理,一旦外界对量子的具体状态进行观察(或者说计算机读取一个量子的状态),那么量子的状态就是确定的,不再具有多态。显然,这样的问题已经不是计算机科学能够解决的问题,势必需要基础理论研究的支持。又比如,人工智能的许多设计思想来自于脑科学研究,通过模拟人脑思考的过程来设计计算机的基础架构。
(3)应用拓展
实际应用的拓展也在激发人工智能技术的不断创新。最典型的例子是便是人工智能在机器人领域的应用,传统的机器人仅仅是数控的机械装置,不能适应变化的环境,与人类的“沟通”成本也非常高。这样的机器人越来越不适应互联网时代的生产需要,于是诞生了对于“互动机器人”的需求:机器人需要能够随时与人进行沟通修正任务(这需要对自然语言进行识别,同时要具备能够自我生成运行代码的能力)、适应随时变化的环境(比如物流机器人能够躲避障碍)、辅助人们的决策(投资顾问、医疗诊断、教育培训、智能翻译等)。这些应用领域反过来推动了人工智能技术层的进步。应用拓展的范围和经济收益也是吸引资本持续进入相关领域的重要动力。
国外人工智能发展情况:深度学习成为最热门领域
回顾人工智能的发展历史,在实现人工智能上有三种路线:一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有二十世纪80年代的专家系统和知识工程;二是基于统计方法仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生;三是行为主义,是从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。
从当前国外人工智能的发展情况来看,其中第二条线路是主流,基于人工神经网络的深度学习是当前最热的研究领域,被Google、Facebook、IBM、NEC以及其他互联网公司广泛使用,最典型的应用领域是图像和语音识别。
图像识别、语音识别、智能搜索是深度学习技术出现以来发展最快的几个领域,其迅速地从试验论证阶段进入到相对成熟的应用阶段。随着这些基础应用领域的成熟,一些高级应用领域的热度也逐步开始上升。例如Google在力推的自动驾驶项目,需要建立感知能力、决策能力以及不断自主学习的能力,可以说是人工智能技术的集大成者。自动驾驶技术需要算法做各种条件下面的路面目标检测、识别交通标志以及形成统一的路况感知。
国内人工智能企业现状:不同规模企业深耕各自的细分领域
从人工智能的历史来看,每一类人工智能的应用均要经过实验室阶段、试点阶段、推广阶段和普及阶段。尽管国内企业在人工智能基础科研方面与美日等国家有巨大差距,但人工智能相关的企业大都从已经进入试点阶段的技术或应用切入,并在视觉、语音识别等技术领域处于国际领先水平。根据2015年艾瑞咨询的统计,中国人工智能领域已有近百家创业公司,约65家获得投资,共计29.1亿元人民币,其中旷视科技、优必选、云之声、SenseTime四家公司登上艾瑞独角兽榜单。
以史为鉴:人工智能发展路径展望—技术领域、应用领域双轮驱动
如果将人工智能的产业链分为基础设施层、技术层和应用层,通过回顾和分析人工智能过去的发展路径,我们认为人工智能的发展往往是靠应用层的需求或是基础设施层的进步推动的,主要存在以下两种路径——需求创造供给,或者供给创造需求。
路径一:应用层的需求推动人们对于AI技术层(算法等)的开发,技术层的进步使得基础设施的利用效率不断提高。不过,当技术层发展到一定阶段时,基础设施的利用效率提升空间很小,此时需要基础设施层的不断升级来支持,一旦基础设施层对于AI的支持跟不上,或是应用层的需求饱和,AI的前进步伐就放缓,甚至进入“寒冬”(如80年代的专家系统)。
路径二:基础设施层的迅速进步使得技术层可以实现的拓展越来越多(比如基于大数据的海量运算的语音识别、人脸识别、搜索等),而技术层的多元化使得人们发现有大量应用层的创新可以推进,解决当前各行业的痛点,甚至创造和培育新的需求。
当前中国还处于行业应用层起步到快速发展的阶段,应用层的投资机会和投入回报率远高于技术层和基础设施层,当这个阶段出现泡沫时,投资机会可能更多地出现在技术层,当技术层停滞并出现泡沫时,投资机会可能更多在基础设施层。根据从目前人工智能的发展情况来看,技术领域的运用已经进入加速期,预计5~10年就能陆续成熟。在基础设施领域,量子计算等新型芯片模式短期内还很难实现,不过基于云端架构的并行计算模式已经逐步进入成熟期,短期内基础设施还不会对人工智能的发展形成障碍。从当前的情况来看,预计应用领域和技术领域将成为人工智能进一步发展的两个核心驱动力。
WHAT:AI是跨行业、跨学科的综合技术
AI横跨4大核心技术,涵盖13个细分领域
人工智能是一个跨学科、跨行业的综合性学科。人工智能最初的核心是实现“智能”这一概念,即机器可以像人一样思考,而不只是被动式的执行人发出的每一步指令。人们研究出许多算法将这一想法得以实现,计算机开始可以自己学习,之后慢慢发展成机器算法这个研究方向。而后,由于人们对于将智能分别运用到图像、语言、声音处理和与硬件之间的互动方面的需求增加,自然语言处理、图像识别和人际交互这三个领域又各自发展成独立的研究方向,他们借用机器学习中的一些算法并更多地加入有自身特性的技术。因此,人工智能现在演化成了机器学习、自然语言处理、图像识别以及人机交互这四大模块。
机器学习技术:指计算机通过对大量已有数据的处理分析和学习,从而拥有预测判断和做出最佳决策的能力。这项技术与计算机科学、统计学、数学优化算法等都有着密不可分的关系。其代表算法有深入学习、人工神经网络、决策树、增强算法等。
自然语言处理技术:指让计算机可以理解人类的语言,包括将人类语言转化为计算机程序可以处理的形式及将计算机数据转化为人类自然语言两种形式。这里指的语言可以是声音也可以是文字。这项技术的主要内容包括信息检索、信息抽取、词性标注、句法分析、多语处理、语音识别等。
图像处理技术:指让计算机拥有人类的视觉功能,可以获得、处理并分析和理解图片或多维度数据。这项技术的主要内容包括图像获得、图像过滤和调整、特征提取等。
人机交互技术:指计算机系统和用户可以通过人机交互界面进行交流。这项技术包括的主要内容包括计算机图像学、交互界面设计、增强现实等。


雷达卡




京公网安备 11010802022788号







