用大N小T(T=2008-2010)面板数据做回归时,p值仅有一个显著。
code:
xtreg I_new L.I_new age L.size L.cash L.q L.roa L.leve,r
Random-effects GLS regression Number of obs = 6,001
Group variable: ticker Number of groups = 1,040
R-sq: Obs per group:
within = 0.2442 min = 1
between = 0.9832 avg = 5.8
overall = 0.9507 max = 9
Wald chi2(7) = 5353.32
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. Err. adjusted for 1,040 clusters in ticker)
------------------------------------------------------------------------------
| Robust
I_new | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
I_new |
L1. | 1.012611 .0808393 12.53 0.000 .8541688 1.171053
|
age | 316.7061 233.0245 1.36 0.174 -140.0134 773.4257
|
size |
L1. | -546.9088 1754.403 -0.31 0.755 -3985.476 2891.659
|
cash |
L1. | -2895.849 2381.849 -1.22 0.224 -7564.187 1772.489
|
q |
L1. | 5.484973 3.25541 1.68 0.092 -.8955142 11.86546
|
roa |
L1. | -99245.93 132343.1 -0.75 0.453 -358633.7 160141.8
|
leve |
L1. | 1431.656 5116.02 0.28 0.780 -8595.56 11458.87
|
_cons | 1659.186 16374.11 0.10 0.919 -30433.48 33751.85
-------------+----------------------------------------------------------------
sigma_u | 28445.971
sigma_e | 56345.111
rho | .20310856 (fraction of variance due to u_i)
------------------------------------------------------------------------------
code
画出了Linear regression line, I_new_ols, 自认为效果不错。
然后对主要变量进行了缩尾(根据变量的分布分别进行单侧/双侧缩尾,p=0.01),p值显著,但Linear regression line,I_new_n(图放2楼),看上去很怪
后缀_n表示缩尾后的变量。size服从正态分布所以没有缩尾,age个人认为缩尾没有意义。。。
code:
. xtreg I_new_n L.I_new_n age L.size L.cash_n L.q_n L.roa_n L.leve_n,r
Random-effects GLS regression Number of obs = 6,001
Group variable: ticker Number of groups = 1,040
R-sq: Obs per group:
within = 0.3716 min = 1
between = 0.9960 avg = 5.8
overall = 0.9819 max = 9
Wald chi2(7) = 26583.52
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. Err. adjusted for 1,040 clusters in ticker)
------------------------------------------------------------------------------
| Robust
I_new_n | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
I_new_n |
L1. | .9915165 .006709 147.79 0.000 .978367 1.004666
|
age | 2.555611 18.8009 0.14 0.892 -34.29348 39.40471
|
size |
L1. | -287.2913 93.89884 -3.06 0.002 -471.3296 -103.2529
|
cash_n |
L1. | -736.5662 280.4008 -2.63 0.009 -1286.142 -186.9908
|
q_n |
L1. | 86.89391 41.58357 2.09 0.037 5.391603 168.3962
|
roa_n |
L1. | -12573.95 23324.22 -0.54 0.590 -58288.58 33140.68
|
leve_n |
L1. | 158086.3 66204.38 2.39 0.017 28328.14 287844.5
|
_cons | 2050.668 772.6301 2.65 0.008 536.3413 3564.996
-------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | 11088.957
rho | 0 (fraction of variance due to u_i)
------------------------------------------------------------------------------
code
这是论文里第一个模型,我要使用这个模型的预测结果计算新变量,再做回归。请问我应该使用哪个模型,更有说服力呢?
dataex放3楼


雷达卡




京公网安备 11010802022788号







