概率分布
诸如影院困境这样的例子,很好地解释了贝叶斯推理的由来,以及作用机制。然而,在数据科学应用领域,此推理常常用于数据解释。有了我们测出来的先验知识,借助小数据集便可得出更好的结论。在开始细说之前,请先允许我先介绍点别的。就是我们需要清楚一个概率分布。
此处可以这样考虑概率,一壶咖啡正好装满一个杯子。倘若用一个杯子来装没有问题,那不止一个杯子呢,你需考虑如何将这些咖啡分这些杯子中。当然你可以按照自己的意愿,只要将所有咖啡放入某个杯子中。而在电影院,一个杯子或许代表女士或者男士。
或者我们用四个杯子代表性别和发长的所有组合分布。这两个案例中,总咖啡数量累加起来为一杯。
通常,我们将杯子挨个摆放,看其中的咖啡量就像一个柱状图。咖啡就像一种信仰,此概率分布用于显示我们相信某件事情的强烈程度。
假设我投了一块硬币,然后盖住它,你会认为正面和反面朝上的几率是一样的。
假设我投了一个骰子,然后盖住它,你会认为六个面中的每一个面朝上的几率是一样的。
假设我买了一期强力球彩票,你会认为中奖的可能性微乎其微。投硬币、投骰子、强力球彩票的结果,都可以视为收集、测量数据的例子。
毫无意外,你也可以对其它数据持有某种看法。这里我们考虑美国成年人的身高,倘若我告诉你,我见过,并测量了某些人的身高,那你对他们身高的看法,或许如上图所示。此观点认为一个人的身高可能介于150和200cm之间,最有可能的是介于180和190cm之间。
此分布可以分成更多的方格,视作将有限的咖啡放入更多的杯子,以期获得一组更加细颗粒度的观点。
最终虚拟的杯子数量将非常大,以至于这样的比喻变得不恰当。这样,分布变得连续。运用的数学方法可能有点变化,但底层的理念还是很有用。此图表明了你对某一事物认知的概率分布。
感谢你们这么有耐心!!有了对概率分布的介绍,我们便可采用贝叶斯定理进行数据解析了。为了说明这个,我以我家小狗称重为例。
兽医领域的贝叶斯推理
它叫雅各宾当政,每次我们去兽医诊所,它在秤上总是各种晃动,因此很难读取一个准确的数据。得到一个准确的体重数据很重要,这是因为,倘若它的体重有所上升,那么我们就得减少其食物的摄入量。它喜欢食物胜过它自己,所以说风险蛮大的。
最近一次,在它丧失耐心前,我们测了三次:13.9镑,17.5镑以及14.1镑。这是针对其所做的标准统计分析。计算这一组数字的均值,标准偏差,标准差,便可得到小狗当政的准确体重分布。
分布展示了我们认为的小狗体重,这是一个均值15.2镑,标准差1.2镑的正态分布。真实得测量如白线所示。不幸的是,这个曲线并非理想的宽度。尽管这个峰值为15.2镑,但概率分布显示,在13镑很容易就到达一个低值,在17镑到达一个高值。太过宽泛以致无法做出一个确信的决策。面对如此情形,通常的策略是返回并收集更多的数据,但在一些案例中此法操作性不强,或成本高昂。本例中,小狗当政的(Reign )耐心已经耗尽,这是我们仅有的测量数据。
此时我们需要贝叶斯定理,帮助我们处理小规模数据集。在使用定理前,我们有必要重新回顾一下这个方程,查看每个术语。
我们用“w” (weight)和 “m” (measurements)替换“A” and “B” ,以便更清晰地表示我们如何用此定理。四个术语分别代表此过程的不同部分。
先验概率,P(w),表示已有的事物认知。本例中,表示未称量时,我们认为的当政体重w。
似然值,P(m | w),表示针对某个具体体重w所测的值m。又叫似然数据。
后验概率,P(w | m),表示称量后,当政为某个体重w的概率。当然这是我们最感兴趣的。
译者注:后验概率,通常情况下,等于似然值乘以先验值。是我们对于世界的内在认知。
概率数据,P(m),表示某个数据点被测到的概率。本例中,我们假定它为一个常量,且测量本身没有偏向。
对于完美的不可知论者来说,也不是什么特别糟糕的事情,而且无需对结果做出什么假设。例如本例中,即便假定当Reign的体重为13镑、或1镑,或1000000 镑,让数据说话。我们先假定一个均一的先验概率,即对所有值而言,概率分布就一常量值。贝叶斯定理便可简化为P(w | m) = P(m | w)。
此刻,借助Reign的每个可能体重,我们计算出三个测量的似然值。比如,倘若当政的体重为1000镑,极端的测量值是不太可能的。然而,倘若当政的体重为14镑或16镑。我们可以遍历所有,利用Reign的每一个假设体重值,计算出测量的似然值。这便是P(m | w)。得益于这个均一的先验概率,它等同于后验概率分布 P(w | m)。
这并非偶然。通过均值、标准偏差、标准差得来的,很像答案。实际上,它们是一样的,采用一个均一的先验概率给出传统的统计估测结果。峰值所在的曲线位置,均值,15.2镑也叫体重的极大似然估计(MLE)。
即使采用了贝叶斯定理,但依旧离有用的估计很远。为此,我们需要非均一先验概率。先验分布表示未测量情形下对某事物的认知。均一的先验概率认为每个可能的结果都是均等的,通常都很罕见。在测量时,对某些量已有些认识。年龄总是大于零,温度总是大于-276摄氏度。成年人身高罕有超过8英尺的。某些时候,我们拥有额外的领域知识,一些值很有可能出现在其它值中。
在Reign的案例中,我确实拥有其它的信息。我知道上次它在兽医诊所称到的体重是14.2镑。我还知道它并不是特别显胖或显瘦,即便我的胳膊对重量不是特别敏感。有鉴于此,它大概重14.2镑,相差一两镑上下。为此,我选用峰值为14.2镑。标准偏差为0.5镑的正态分布。
先验概率已经就绪,我们重复计算后验概率。为此,我们考虑某一概率,此时Reign体重为某一特定值,比如17镑。接着,17镑这一似然值乘以测量值为17这一条件概率。接着,对于其它可能的体重,我们重复这一过程。先验概率的作用是降低某些概率,扩大另一些概率。本例中,在区间13-15镑增加更多的测量值,以外的区间则减少更多的测量值。这与均一先验概率不同,给出一个恰当的概率,当政的真实体重为17镑。借助非均匀的先验概率,17镑掉入分布式的尾部。乘以此概率值使得体重为17镑的似然值变低。
通过计算当政每一个可能的体重概率,我们得到一个新的后验概率。后验概率分布的峰值也叫最大后验概率(MAP),本例为14.1镑。这和均一先验概率有明显的不同。此峰值更窄,有助于我们做出一个更可信的估测。现在来看,小狗当政的体重变化不大,它的体型依旧如前。
通过吸收已有的测量认知,我们可以做出一个更加准确的估测,其可信度高于其他方法。这有助于我们更好地使用小量数据集。先验概率赋予17.5镑的测量值是一个比较低的概率。这几乎等同于反对此偏离正常值的测量值。不同于直觉和常识的异常检测方式,贝叶斯定理有助于我们采用数学的方式进行异常检测。
另外,假定术语P(m)是均一的,但恰巧我们知道称量存在某种程度的偏好,这将反映在P(m)中。若称量仅输出某些数字,或返回读数2.0,占整个时间的百分之10,或第三次尝试产生一个随机测量值,均需要手动修改P(m)以反映这一现象,以便后验概率更加准确。
规避贝叶斯陷阱
探究Reign的真实体重体现了贝叶斯的优势。但这也存在某些陷阱。通过一些假设我们改进了估测,而测量某些事物的目的就是为了了解它。倘若我们假定对某一答案有所了解,我们可能会删改此数据。马克·吐温对强先验的危害做了简明地阐述,“将你陷入困境的不是你所不知道的,而是你知道的那些看似正确的东西。”
假如采取强先验假设,当Reign的体重在13与15镑之间,再假如其真实体重为12.5镑,我们将无法探测到。先验认知认为此结果的概率为零,不论做多少次测量,低于13镑的测量值都认为无效。
幸运的是,有一种两面下注的办法,可以规避这种盲目地删除。针对对于每一个结果至少赋予一个小的概率,倘若借助物理领域的一些奇思妙想,当政确实能称到1000镑,那我们收集的测量值也能反映在后验概率中。这也是正态分布作为先验概率的原因之一。此分布集中了我们对一小撮结果的大多数认识,不管怎么延展,其尾部再长都不会为零。
在此,红桃皇后是一个很好的榜样:爱丽丝笑道:“试了也没用,没人会相信那些不存在的事情。”
“我敢说你没有太多的练习”,女王回应道,“我年轻的时候,一天中的一个半小时都在闭上眼睛,深呼吸。为何,那是因为有时在早饭前,我已经意识到存在六种不可能了。”来自刘易斯·卡罗尔的《爱丽丝漫游奇境》



雷达卡




京公网安备 11010802022788号







