覃重军(合成生物学权威专家,中科院上海植物生理生态研究所合成生物学重点实验室主任)
覃重军长期从事分子微生物学和微生物药物代谢工程研究。他领导的团队创造出全球首例人造单染色体真核细胞,该技术对人体衰老和癌症研究具有重要意义。
由于他的演讲太有趣了,我把他的演讲视频上传到了腾讯视频(吐槽一下,腾讯视频的审核的速度简直像乌龟漫步),大家不妨直接看视频,同时保留了他的演讲全文:
非常感谢大家能到这里来。给大家讲一个故事,这个故事是我在8月份发表在《自然》杂志上的,就是人造单染色体真核生物,用老百姓通俗的话说就是人造生命体。这个故事本身是从哪里来的呢?就是说我在读研究生的时候,有很多的梦,但是跟这个故事最直接相关的梦,是我在大概1995年的时候去美国斯坦福大学,美丽的校园,很荣幸我的老师是基因工程的创始人Stanley Cohen。
我在读书的时候就知道他做出一项历史性的贡献,就是发明重组DNA,就是我们所说的基因工程的创始人。在那个时候我就跟他说,我未来如果我能发明基因组工程技术就好了,能够在历史上留名。但是那个时候只是想法,我不知道是哪一天能做到,大概20年过去了,我终于有机会实现这个梦想了,所以我觉得人生很欣慰。
当时的这一个梦想至少是实现了,所以我感谢我的老师给我当时的启迪,鼓励我去冲击世界难题。我回到国内在上海生命科学院工作,在读书的时候就知道,中国科学家在生命科学领域里有一些标志性的成果,比如我们大家所熟知的人工合成结晶胰岛素,是由上海生化所还有很多的单位,由200多人合作做出来的。
中国半个世纪之前领先世界的成果,是随后又一个大合作,做出来酵母核糖核酸的合成。去年大家也知道中国又一个合成的成果出来了,人造酿酒酵母的染色体,中国合成了其中的四条。酿酒酵母我后面还会提到,它有16条染色体,但是这个计划的组织者、就是说设计师,是来自于纽约大学的Jef Boeke美国科学院院士,我后面还会提到他,他领导的这个项目。但是中国人很勤奋,率先完成了4篇论文,也是标志性成果。
那个时候我在心里想,上海这片土地上莫非还可再合成一个什么东西出来?就是这些土地适合去合成各种生命体系,再往前一步,除了蛋白、核糖核酸、染色体之外,接下来这些所有的成果集中在一起,能不能造一个生命体出来?当然这个挑战很大。
但是,我觉得时代变了,我们可以做到、中国可以做到!
我先讲一下,我们自然界发现的生物,大概也就分成两大类:
第一大类就是我们所知道的细菌原核生物。原核生物是在显微镜下才能看见的,它有一条染色体,原核生物的生长与繁殖相关所有的遗传信息,都集中在这一条染色体上。
另一大类跨度很大,从人类、动物、植物、真菌、酵母,后面说的我做的就是酵母,这是最简单的,它都属于另一大类的生物:真核生物。
这类生物,当我看它的一个现象的时候觉得很奇怪。我们很多人都知道,人有23对染色体,所有的生长、繁殖的遗传信息都分布在不同的染色体上。这里显示出一个染色体的图,人类是一对线型染色体。在中间那里叫丝粒,两端叫端粒,这个名词我后面还会提到。
我们看跟人比较近的小鼠,它一下子从23变成20对了,还有果蝇(一种小昆虫)只有4对染色体,那么少,这是动物。
我们再来看植物。植物里面我们大家所熟悉的水稻有12对染色体,它是植物里面的模式植物,生长周期短、基因组小的植物;长得很小的芥菜只有5对染色体。从我一个做微生物的学家来看,自然界在染色体的数目上似乎太随意了,可以多可以少,而且好像跟进化的定位没有多少关系。
然后我再看,当我们比较原核生物和真核生物的时候,染色体数目原核一般是一条,真核有很多条。染色体的构型,原核生物是环形的,真核生物是线形的,这是它们自己的界限。
我们人能不能在人造生命中打破这种自然界限呢?我想肯定可以。如果人只是一切都听从自然的话,那人类的智慧就不够了;如果人类的智慧足够够的话,可以打破这种自然的界限,也同样可以造出新生命,也是没有问题,我相信能够做到这一点。
回到前面一点,如果我们回答跟人最相关的问题:能不能造一个真核生物,只有一条染色体,但是所有的生长、繁殖、遗传信息全都在这一条染色体上?这个生命也是活的,而且活得很好;但你的生命要是死了,那就是人造的大失败。
如果你猜透了自然的很多规律,应该来说我的猜想没有问题,但这个难度很大、挑战也很大。
我每天散步都在想,我该用什么材料。首先你能不能做成这个,毫无疑问,要用模式材料,最简单的生物,比较酿酒酵母。我在2013年5月8号那天,在园子里散步想到了一个想法,回到了办公室写下了这样一张图,从酵母菌的16条染色体开始。因为酿酒酵母虽然属于低等的真核生物,它竟然有16对染色体,我心想自然绝对是随意的,在这一瞬间。应该来说我们可以把它变成一条染色体,先变成一条线性,还是属于真核,我后面又把它变成环,像原核一样,彻底打破这个界限。那一天的日子我清楚地记得,所以这里是可以讲故事的,因为我还是有写的习惯。
为什么做酿酒酵母呢?因为要选择有重大意义的、基础上研究最透彻的。酿酒酵母毫无疑问是一个单细胞模式的真核生物,它研究得非常透彻;它还有很重要的应用价值,我们大家可以看到,在显微镜下虽然看得很小,但是我们喝的啤酒、红酒、面包都是酿酒酵母的功劳,所以它是可以吃的。这样一个材料,我觉得可以很好地帮助我实现想法。
本来想讲一些具体的东西,我用一个动画大概讲讲我是怎么想这个事儿的。这就是16条染色体在酿酒酵母里面长短不一,在线性的中间叫着丝粒,靠近两端的叫端粒,我们开始把这16个变成15、14、13个,最终要变成1个。
但是不是可以随机做变动呢?我们说了可以随机,你这里的两对都可以去做,大家看红点,天然的着丝粒好像一般来说比较偏中间,可不可以偏完左边偏右边呢?我们测试发现没有问题,左右都没问题,无论大小的都没有问题,所以就很放心了。大概自然可以允许我们做成这样一件事情,我不用担心了,因为我之前并不是做酿酒酵母的。
另外,还得发明高效的技术,因为你把两个染色体融合在一起,天然也有融合在一起的,天然融合的话会发生基因组不稳定,会断裂重组,这样你在融合当中一定要同时敲除掉两个端粒和一个着丝粒,必须同时完成。
很幸运的是,2013年我想到这个想法,没多久国际上就有一个很著名的技术——基因编辑技术(CRISPR/Cas9)出现了,它可以同时切几个点,非常精确,所以使得我们就可以执行了。我们就每一步每一步地去做,带着工匠精神,每一步都去严格验证,最后大概用了一年半的时间就做成了。16条染色体的构型就是中间只有一个着丝粒,我们大概放在中间,两边有两个端粒。
很吃惊的是,当我们造出了这个生物,我们去描述它的时候发现,它的细胞生长和细胞形态跟天然的几乎是一样的,这个太吃惊了,我们以为它几乎不会活,没想到活得挺好的。
但是你看染色体的结构就发生了巨大的变化,它的16条染色体上面显示,它组织得很好,就像我们人说的生命真的很伟大,它组织得很好。
你看我们底下人造的一条染色体,似乎很混乱。但它竟然没有问题,这给我一个暗示:生命真的有多种表现形式,全都是正确的,所以不只有一种形式。
我简单总结一下这一点。这个故事的起源一定是大胆的猜想,但猜完之后接下来就不能大胆了,一定要确定理性设计的原则,每一个原则我都仔细地想,是不是可以这样、是不是应该这样。
有些没有文献的话,我就得做预实验,一定把这些原则确定好了,有关键技术。所以我们说核心技术很重要,当然这项核心技术在国际上已经建立了,我们只是借用在酿酒酵母里。
最后一项,精确化的、工程化的实施。我们在电视上经常看到大国的工匠精神,做成这件事情一定要有工匠精神。这一年半的时间里面,学生的每一个细节我都要掌握,我不能让他出一点错。因为错了的话,整个大厦就会垮掉。所以做成这件事情我有四点体会。
我前面不是说了要破界吗?前面这么大胆的动作都做了,后面就不算什么了,就把两个线性染色体的端粒给环起来就环化了,这个时候生物就不好好长了,它长得很慢、很怪,对于外面的诱变剂很敏感。
唯一一点优势就是,它没有端粒复制和维持稳定相关的衰老,因为端粒跟衰老、肿瘤有关,但是这个环形的话,不理这一套了,这是唯一的一点优点。
这个世界还是很奇妙的,我们发表了这篇文章,但是还有另外一个美国的院士,我前面提到的Jef Boeke,他也跟我同时在做这样一项工作。但是他比我做得晚,我们大概是2015年开始做,他是2016年左右,比我们晚一点点。
但是,他学生比我做得快一点,他们投稿到《自然》时怎么也融合不了一个染色体,但是我们稍后就投了《自然》,融合成了一个染色体,所以我觉得我很幸运。他是做了一辈子酿酒酵母40多年,我是从来没有做过酿酒酵母的,他感到很吃惊,他说我怎么听说这个领域里没你这个人呢?
但是,做成了这件事情的话,这个美国的科学家还是很Nice的,他说我太欣赏你了,我给你设计一个图,这就是16条染色体的一个小小的酵母带一个球,16条染色体一下变成一条。因为他只做成两条,他说我太欣赏你的这个工作了,给你做这个。



雷达卡






京公网安备 11010802022788号







