楼主: zhangke0987
1679 4

Automated Algorithmic Trading [推广有奖]

  • 2关注
  • 55粉丝

已卖:23846份资源

学科带头人

53%

还不是VIP/贵宾

-

威望
1
论坛币
257125 个
通用积分
1903.3792
学术水平
140 点
热心指数
167 点
信用等级
168 点
经验
37772 点
帖子
730
精华
0
在线时间
1533 小时
注册时间
2018-11-16
最后登录
2025-12-8

楼主
zhangke0987 发表于 2019-1-15 15:29:09 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Automated Algorithmic Trading: Machine Learning and Agent-based Modelling in Complex Adaptive Financial Markets


A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy


April 2016


Over the last three decades, most of the world’s stock exchanges have transitioned to electronic trading through limit order books, creating a need for a new set of models for understanding these markets. In this thesis, a number of models are described which provide insight into the dynamics of modern financial markets as well as providing a platform for optimising trading and regulatory decisions.

The first part of this thesis proposes an autonomous system that uses novel machine learning techniques to predict the price return over well documented seasonal events and uses these predictions to develop a profitable trading strategy. The DAX, FTSE 100 and S&P 500 are explored for the presence of seasonality events before an automated trading system based on performance weighted ensembles of random forests is introduced and shown to improve the profitability and stability of trading such events. The performance of the models is analysed using a large sample of stocks and the results show that the system described in this section produces superior results in terms of both profitability and prediction accuracy compared with other ensemble techniques.

The second part of this thesis explores price impact. For many players in financial markets, the price impact of their trading activity represents a large proportion of their transaction costs. This section of the thesis proposes an adaptation of the system introduced in the first part for predicting the price impact of order book events. The system’s performance is benchmarked using ensembles of other popular regression algorithms including: linear regression, neural networks and support vector regression using depth-of-book data from the BATS Chi-X exchange. The results show that recencyweighted ensembles of random forests produce over 15% greater prediction accuracy on out-of-sample data, for 5 out of 6 timeframes studied, compared with all benchmarks. Finally, a novel procedure for extracting the directional effects of features is proposed and used to explore the features most dominant in the price formation process.

The final part of this thesis addresses the requirement for testing algorithmic trading strategies laid out in the Markets in Financial Instruments Directive (MiFID) II by describing an agent-based simulation. Five types of agent operate in a limit order market producing a model that is able to reproduce a number of stylised market properties including: clustered volatility, autocorrelation of returns, long memory in order flow, concave price impact and the presence of extreme price events. The model is found to be insensitive to reasonable parameter variations. Finally, the model is used to explore how trading strategy affects the implementation shortfall of trading a large order. A number of execution strategies with various order types, are evolved and evaluated in the agent-based market. It is shown that the evolved strategies outperform the simple, wellknown strategies significantly, suggesting that execution strategy plays an important role in determining the implementation shortfall of trading large orders.



Automated Algorithmic Trading Machine Learning and Agent-based Modelling in Comp.pdf (2.63 MB, 需要: 5 个论坛币)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Algorithmic Algorithm Automated Trading rading

已有 1 人评分论坛币 收起 理由
zhou_yl + 40 精彩帖子

总评分: 论坛币 + 40   查看全部评分

本帖被以下文库推荐

沙发
yl36(未真实交易用户) 在职认证  发表于 2019-1-15 16:25:45
谢谢您的分享!!!

藤椅
zhou_yl(未真实交易用户) 发表于 2019-1-16 09:21:37 来自手机
谢谢分享

板凳
amtw14(未真实交易用户) 发表于 2019-1-16 13:14:12

报纸
tztosh(未真实交易用户) 发表于 2019-4-1 11:25:25
Thanks

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-9 07:59