二、10.
解:$S$为一个闭合曲面,方向向外,所以采用高斯公式计算,并注意对称性。$$P=xy\sqrt{1-x^2},Q=0,R=e^x\sin x. $$
\begin{align*}
\underset{S}{\iint}Pdydz+Qdzdx+Rdxdy&=\underset{\Omega }{\iiint} \left ( \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \right )dV \\
&=\underset{\Omega }{\iiint} \left ( \frac{y}{\sqrt{1-x^2}}\right )dV=4\int_{0}^{1}\frac{1}{\sqrt{1-x^2}}dx\int_{0}^{\sqrt{1-x^2}}dz\int_{0}^{z}ydy \\
&=2\int_{0}^{1}\frac{1}{\sqrt{1-x^2}}dx\int_{0}^{\sqrt{1-x^2}}z^2dz=\frac{2}{3}\int_{0}^{1}\frac{(1-x^2)^\frac{3}{2}}{\sqrt{1-x^2}}dx \\
&=\frac{2}{3}(x-\frac{1}{3}x^3)|_0^1=\frac{4}{9}.
\end{align*}


雷达卡
京公网安备 11010802022788号







