楼主: xuehe
1052 1

[学科前沿] Measuring the Return to Online Advertising: Estimation and Inference of Endogeno [推广有奖]

贵宾

已卖:14811份资源

学术权威

87%

还不是VIP/贵宾

-

威望
8
论坛币
577240 个
通用积分
483.4962
学术水平
370 点
热心指数
366 点
信用等级
207 点
经验
356305 点
帖子
4313
精华
8
在线时间
2646 小时
注册时间
2004-12-31
最后登录
2025-12-16

楼主
xuehe 发表于 2019-6-16 00:42:54 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Measuring the Return to Online Advertising:Estimation and Inference of Endogenous Treatment EffectsShakeeb Khan1, Denis Nekipelov2, Justin Rao3AbstractIn this paper we aim to conduct inference on the “lift” effect generated by an online advertisementdisplay: specifically we want to analyze if the presence of the brand ad among theadvertisements on the page increases the overall number of consumer clicks on that page.A distinctive feature of online advertising is that the ad displays are highly targeted- theadvertising platform evaluates the (unconditional) probability of each consumer clicking on agiven ad which leads to a higher probability of displaying the ads that have a higher a prioriestimated probability of click. As a result, inferring the causal effect of the ad display onthe page clicks by a given consumer from typical observational data is difficult. To addressthis we use the large scale of our dataset and propose a multi-step estimator that focuseson the tails of the consumer distribution to estimate the true causal effect of an ad display.This “identification at infinity ” (Chamberlain (1986)) approach alleviates the need for independentexperimental randomization but results in nonstandard asymptotics. To validateour estimates, we use a set of large scale randomized controlled experiments that Microsofthas run on its advertising platform. Our dataset has a large number of observations and alarge number of variables and we employ LASSO to perform variable selection. Our nonexperimentalestimates turn out to be quite close to the results of the randomized controlledtrials.JEL Classification: C14, C31, C55, C90, M37.Keywords: Endogenous treatment effects, randomized control trials, online advertising, lifteffect.
Measuring the Return to Online Advertising_Estimation and Inference of Endogenou.pdf (661.13 KB, 需要: 3 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


已有 1 人评分经验 收起 理由
nuomin + 100 鼓励积极发帖讨论

总评分: 经验 + 100   查看全部评分

本帖被以下文库推荐

沙发
sofree(未真实交易用户) 发表于 2019-6-16 22:34:49

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-2-8 13:14