楼主: xj_peng2005
29665 10

[求助]什么是Weibull分布? [推广有奖]

  • 0关注
  • 0粉丝

小学生

0%

还不是VIP/贵宾

-

威望
0
论坛币
273 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
111 点
帖子
7
精华
0
在线时间
0 小时
注册时间
2006-2-21
最后登录
2010-3-12

楼主
xj_peng2005 发表于 2006-3-7 14:50:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

向各位讨教一下:什么是Weibull分布?

服从这个分布需要什么条件?

服从了这个分布后,对于数据的分析又有什么益处?

预答辩时被老师当场问到的问题,语塞……,尴尬……, 无助……

现请求各位帮助解惑,或推荐相关的书籍中相关的内容亦可

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Weibull分布 Weibull Bull wei 预答辩 Weibull

回帖推荐

zhaosweden 发表于5楼  查看完整内容

Some stuff from google: (among others ,,) Weibull Distribution. As described earlier, the exponential distribution is often used as a model of time-to-failure measurements, when the failure (hazard) rate is constant over time. When the failure probability varies over time, then the Weibull distribution is appropriate. Thus, the Weibull distribution is often used in reliability testing (e.g., of ...

zhaosweden 发表于2楼  查看完整内容

From mathWorld: The Weibull distribution is given by (3) (4) (5) (6) and the mean, variance, skewness, and kurtosis of are (11) A slightly different form of the distribution is defined by (14) (15) (16) (17) so the mean and variance for this form are

本帖被以下文库推荐

沙发
zhaosweden 发表于 2006-3-7 19:20:00

From mathWorld:

The Weibull distribution is given by

(1)
(2)

for , and is implemented in Mathematica as WeibullDistribution[alpha, beta] in the Mathematica add-on package Statistics`ContinuousDistributions` (which can be loaded with the command <<Statistics`) . The raw moments of the distribution are

(3)
(4)
(5)
(6)

and the mean, variance, skewness, and kurtosis of are

(7)
(8)
(9)
(10)

where is the gamma function and

(11)

A slightly different form of the distribution is defined by

(12)
(13)

(Mendenhall and Sincich 1995). This has raw moments

(14)
(15)
(16)
(17)

so the mean and variance for this form are

(18)
(19)

The Weibull distribution gives the distribution of lifetimes of objects. It was originally proposed to quantify fatigue data, but it is also used in analysis of systems involving a "weakest link."

已有 1 人评分经验 论坛币 收起 理由
胖胖小龟宝 + 10 + 10 热心帮助其他会员

总评分: 经验 + 10  论坛币 + 10   查看全部评分

藤椅
xj_peng2005 发表于 2006-3-7 19:57:00

感谢:zhaosweden

我要慢慢品味

能否告知在经济学的调查分析中

一般在什么情况下,假设满足此分布

板凳
随机过程 发表于 2006-3-8 00:24:00
无序logit模型是根据此分布推倒出来的!此分布的好处就是计算上处理方便!

报纸
zhaosweden 发表于 2006-3-8 01:36:00

Some stuff from google:

(among others ,,)

Weibull Distribution. As described earlier, the exponential distribution is often used as a model of time-to-failure measurements, when the failure (hazard) rate is constant over time. When the failure probability varies over time, then the Weibull distribution is appropriate. Thus, the Weibull distribution is often used in reliability testing (e.g., of electronic relays, ball bearings, etc.; see Hahn and Shapiro, 1967). The Weibull distribution is defined as:

f(x) = c/b*(x/b)(c-1) * e[-(x/b)^c], for 0 £ x < ¥, b > 0, c > 0

where

b is the scale parameter
c is the shape parameter
e is the base of the natural logarithm, sometimes called Euler's e (2.71...)

------------------------------------------------------------------------------

Personal comment:

at least in the above example, the essence is that this distribution is more flexible. Another exmaple I know well is the generalized error distribution (GED, similarly for exponential power distribution, EPD). In Nelson 1991, EGARCH model, the error terms is assumed GED. by varying the parameter v in GED, the distribution can cover fatter, thinner than normal distribution. when v=2, it reduces to normal distribution. For typical finanical time series v_hat is 1.5, for instance.

So whether the error is indeed normal can be seen from the estimated parameter v. It one assumes normality, she actually restricts the innovation to be normal (v=2).

---

All in all, this kind of distribution may avoid possible mistake by not assuming a more restricted distribution. So let the data speak.

---

[此贴子已经被作者于2006-3-8 4:36:06编辑过]

地板
xj_peng2005 发表于 2006-3-8 18:01:00

非常感谢各位的帮助

我想我已经找到了一些方向

7
最爱亚美 发表于 2007-7-3 15:56:00

还有一个问题,什么是两参数的Weibull分布,如何对其进行参数估计?

8
潺涓 发表于 2010-4-1 10:23:13
7# 最爱亚美
两参数威布尔分布,一个是形状参数,一个是刻度参数,可以用矩估计实现
[img][/img]

9
alice_000000 发表于 2011-1-9 20:05:46
7# 最爱亚美
matlab中有专门估计其参数的命令,如果是极大似然估计的话,用wblfit就可以

10
hugebear 发表于 2011-1-9 20:27:27
在可靠性理论,精算学中常用的分布。
而且它是三大极值分布之一。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-20 12:49