楼主: universecn
1444 1

[学术资料] Mathematics for Machine Learning Paperback – January 31, 2020 [推广有奖]

  • 3关注
  • 9粉丝

已卖:698份资源

讲师

44%

还不是VIP/贵宾

-

威望
0
论坛币
1825 个
通用积分
43.9651
学术水平
18 点
热心指数
22 点
信用等级
17 点
经验
15577 点
帖子
458
精华
0
在线时间
234 小时
注册时间
2016-12-19
最后登录
2023-6-20

楼主
universecn 发表于 2019-9-15 05:38:11 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Mathematics for Machine Learning - Paperback – January 31, 2020
by Marc Peter Deisenroth (Author), A. Aldo Faisal (Author), Cheng Soon Ong (Author)

这个是出版前最后的Draft 版,应该不会有版权问题。

  • Paperback: 398 pages
  • Publisher: Cambridge University Press (January 31, 2020)
  • Language: English
  • ISBN-10: 110845514X
  • ISBN-13: 978-1108455145


The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Table of Contents

Part I: Mathematical Foundations

  • Introduction and Motivation
  • Linear Algebra
  • Analytic Geometry
  • Matrix Decompositions
  • Vector Calculus
  • Probability and Distribution
  • Continuous Optimization

Part II: Central Machine Learning Problems

  • When Models Meet Data
  • Linear Regression
  • Dimensionality Reduction with Principal Component Analysis
  • Density Estimation with Gaussian Mixture Models
  • Classification with Support Vector Machines





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


2020_Mathematics_for_machine_learning.pdf
下载链接: https://bbs.pinggu.org/a-2927791.html

16.29 MB

需要: 5 个论坛币  [购买]

希望对你有用

沙发
hifinecon(真实交易用户) 发表于 2019-9-15 12:17:50 来自手机
universecn 发表于 2019-9-15 05:38
Mathematics for Machine Learning - Paperback – January 31, 2020
by Marc Peter Deisenroth (Author), ...

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-17 07:11