|
> x=c(rep(1,5),rep(2,5)) > x1=as.factor(x) > e=rnorm(10,0,3) > y=4*x+e > fit=lm(y~x1) > summary(fit) Call: lm(formula = y ~ x1) Residuals: Min 1Q Median 3Q Max -4.7426 -2.4395 0.5468 2.1125 5.0009 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5.399 1.514 3.565 0.00734 * x12 3.173 2.142 1.482 0.17670 *** - - - Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.386 on 8 degrees of freedom Multiple R-squared: 0.2153, Adjusted R-squared: 0.1173 F-statistic: 2.195 on 1 and 8 DF, p-value: 0.1767 > fit=lm(y~x1-1) > summary(fit) Call: lm(formula = y ~ x1 - 1) Residuals: Min 1Q Median 3Q Max -4.7426 -2.4395 0.5468 2.1125 Coefficients: Estimate Std. Error t value Pr(>|t|) x11 5.399 1.514 3.565 x11 0.007345 * x12 8.572 1.514 5.661 x12 0.000476 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.386 on 8 degrees of freedom Multiple R-squared: 0.8484, Adjusted R-squared: 0.8104 F-statistic: 22.38 on 2 and 8 DF, p-value: 0.0005289 >fit1=lm(y~x1,contrasts=list(X1=”contr.sum”)) Summary(fit1) the question is what is summary(fit1)
|