楼主: kxjs2007
9122 13

【下载】Bayes and Empirical Bayes Methods for Data Analysis, Second Edition~2nd [推广有奖]

  • 0关注
  • 31粉丝

已卖:16701份资源

讲师

45%

还不是VIP/贵宾

-

威望
0
论坛币
16255 个
通用积分
161.8670
学术水平
38 点
热心指数
50 点
信用等级
29 点
经验
21907 点
帖子
471
精华
0
在线时间
313 小时
注册时间
2009-11-7
最后登录
2024-7-1

楼主
kxjs2007 发表于 2010-6-2 07:49:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Product Details
  • Hardcover: 440 pages
  • Publisher: Chapman & Hall; 2 edition (June 22, 2000)
  • Language: English
  • ISBN-10: 1584881704
  • ISBN-13: 978-1584881704

Content

Preface to the Second Edition
Preface to the First Edition

1 Approaches for statistical inference
1.1 Introduction
1.2 Motivating vignettes
1.2.1 Personal probability
1.2.2 Missing data
1.2.3 Bioassay
1.2.4 Attenuation adjustment
1.3 Defining the approaches
1.4 The Bayes-frequentist controversy
1.5 Some basic Bayesian models
1.5.1 A Gaussian/Gaussian (normal/normal) model
1.5.2 A beta/binomial model
1.6 Exercises
2 The Bayes approach
2.1 Introduction
2.2 Prior distributions
2.2.1 Elicited priors
2.2.2 Conjugate priors
2.2.3 Noninformative priors
2.2.4 Other prior construction methods
2.3 Bayesian inference
2.3.1 Point estimation
2.3.2 Interval estimation
2.3.3 Hypothesis testing and Bayes factors
2.3.4 Example: Consumer preference data
2.4 Model assessment
2.4.1 Diagnostic measures
2.4.2 Model averaging
2.5 Nonparametric methods
2.6 Exercises
3 The empirical Bayes approach
3.1 Introduction
3.2 Nonparametric EB (NPEB) point estimation
3.2.1 Compound sampling models
3.2.2 Simple NPEB (Robbins' method)
3.2.3 Example: Accident data
3.3 Parametric EB (PEB) point estimation
3.3.1 Gaussian/Gaussian models
3.3.2 Beta/binomial model
3.3.3 EB performance of the PEB
3.3.4 Stein estimation
3.4 Computation via the EM algorithm
3.4.1 EM for PEB
3.4.2 Computing the observed information
3.4.3 EM for NPEB
3.4.4 Speeding convergence and generalizations
3.5 Interval estimation
3.5.1 Morris' approach
3.5.2 Marginal posterior approach
3.5.3 Bias correction approach
3.6 Generalization to regression structures
3.7 Exercises
4 Performance of Bayes procedures
4.1 Bayesian processing
4.1.1 Univariate stretching with a two-point prior
4.1.2 Multivariate Gaussian model
4.2 Frequentist performance: Point estimates
4.2.1 Gaussian/Gaussian model
4.2.2 Beta/binomial model
4.2.3 Generalization
4.3 Frequentist performance: Confidence intervals
4.3.1 Beta/binomial model
4.3.2 Fieller-Creasy problem
4.4 Empirical Bayes performance
4.4.1 Point estimation
4.4.2 Interval estimation
4.5 Design of experiments
4.5.1 Bayesian design for frequentist analysis
4.5.2 Bayesian design for Bayesian analysis
4.6 Exercises
5 Bayesian computation
5.1 Introduction
5.2 Asymptotic methods
5.2.1 Normal approximation
5.2.2 Laplace's method
5.3 Noniterative Monte Carlo methods
5.3.1 Direct sampling
5.3.2 Indirect methods
5.4 Markov chain Monte Carlo methods
5.4.1 Substitution sampling and data augmentation
5.4.2 Gibbs sampling
5.4.3 Metropolis-Hastings algorithm
5.4.4 Hybrid forms and other algorithms
5.4.5 Variance estimation
5.4.6 Convergence monitoring and diagnosis
5.5 Exercises
6 Model criticism and selection
6.1 Bayesian robustness
6.1.1 Sensitivity analysis
6.1.2 Prior partitioning
6.2 Model assessment
6.3 Hayes factors via marginal density estimation
6.3.1 Direct methods
6.3.2 Using Gibbs sampler output
6.3.3 Using Metropolis-Hastings output
6.4 Bayes factors via sampling over the model space
6.4.1 Product space search
6.4.2 "Metropolized" product space search
6.4.3 Reversible jump MCMC
6.4.4 Using partial analytic structure
6.5 Other model selection methods
6.5.1 Penalized likelihood criteria
6.5.2 Predictive model selection
6.6 Exercises
7 Special methods and models
7.1 Estimating histograms and ranks
7.1.1 Model and inferential goals
7.1.2 Triple goal estimates
7.1.3 Smoothing and robustness
7.2 Order restricted inference
7.3 Nonlinear models
7.4 Longitudinal data models
7.5 Continuous and categorical time series
7.6 Survival analysis and frailty models
7.6.1 Statistical models
7.6.2 Treatment effect prior determination
7.6.3 Computation and advanced models
7.7 Sequential analysis
7.7.1 Model and loss structure
7.7.2 Backward induction
7.7.3 Forward sampling
7.8 Spatial and spatio-temporal models
7.8.1 Point source data models
7.8.2 Regional summary data models
7.9 Exercises
8 Case studies
8.1 Analysis of longitudinal AIDS data
8.1.1 Introduction and background
8.1.2 Modeling of longitudinal CD4 counts
8.1.3 CD4 response to treatment at two months
8.1.4 Survival analysis
8.1.5 Discussion
8.2 Robust analysis of clinical trials
8.2.1 Clinical background
8.2.2 Interim monitoring
8.2.3 Prior robustness and prior scoping
8.2.4 Sequential decision analysis
8.2.5 Discussion
8.3 Spatio-temporal mapping of lung cancer rates
8.3.1 Introduction
8.3.2 Data and model description
8.3.3 Computational considerations
8.3.4 Model fitting, validation, and comparison
8.3.5 Discussion

Appendices
A Distributional catalog
A.1 Discrete
A.1.1 Univariate
A.1.2 Multivariate
A.2 Continuous
A.2.1 Univariate
A.2.2 Multivariate
B Decision theory
B.1 Introduction
B.1.1 Risk and admissibility
B.1.2 Unbiased rules
B.1.3 Bayes rules
B.1.4 Minimax rules
B.2 Procedure evaluation and other unifying concepts
B.2.1 Mean squared error
B.2.2 The variance-bias tradeoff
B.3 Other loss functions
B.3.1 Generalized absolute loss
B.3.2 Testing with a distance penalty
B.3.3 A threshold loss function
B.4 Multiplicity
B.5 Multiple testing
B.5.1 Additive loss
B.5.2 Non-additive loss
B.6 Exercises
C Software guide
C.1 Prior elicitation
C.2 Random effects models/ Empirical Bayes analysis
C.3 Bayesian analysis
C.3.1 Special purpose programs
C.3.2 Teaching programs
C.3.3 Markov chain Monte Carlo programs
D Answers to selected exercises

References
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Empirical Analysis Methods Analysi Edition Analysis Edition Empirical Data Bayes

已有 1 人评分热心指数 收起 理由
bf2006 + 1 支持分享,可免費更好

总评分: 热心指数 + 1   查看全部评分

本帖被以下文库推荐

为了幸福,努力!

沙发
nnez1984(未真实交易用户) 发表于 2010-6-2 07:52:12
为了币,我乱顶

藤椅
bf2006(真实交易用户) 发表于 2010-6-2 08:26:24
支持分享,可免費更好

板凳
huiwangpk(真实交易用户) 发表于 2010-6-2 08:41:42
谢谢楼主啦

报纸
vincentchou(真实交易用户) 发表于 2010-9-1 21:00:30
没笔啊 我顶

地板
vincentchou(真实交易用户) 发表于 2010-9-1 21:06:25
为啥我冲了值还下不了呢

7
m8843620(未真实交易用户) 发表于 2011-5-27 17:42:41
謝謝樓主的分享

8
m8843620(未真实交易用户) 发表于 2012-2-16 11:52:06
謝謝樓主的分享

9
zhangary(真实交易用户) 发表于 2012-6-2 17:36:28
thanks for sharing!
We all learn by doing, by experimenting (often failing) and by asking questions.

10
liangran10000(真实交易用户) 发表于 2013-11-7 13:05:07
这本书的第三版是Bayesian Methods for Data Analysis, Third Edition...顶一个...

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-29 17:04