|
This review is from: Statistical Mechanics: Entropy, Order Parameters and Complexity (Oxford Master Series in Physics) (Paperback)
This advanced undergraduate or introductory graduate level text on statistical mechanics is clearly written by a master and perhaps visionary teacher. Statistical mechanics remains, in my opinion, the only truly rigorous science of emergent phenomena. As the scientific community in general focuses more on complex systems, it is likely that the techniques developed for the theoretical study of the statistical thermodynamic properties of matter will find widespread applications from biology to banking. In this spirit, this book is written to educate the next generation of scientists rather than as a text focused solely on existing applications.
While the subject matter of this book easily devolves into mathematical gymnastics, this text is wonderfully written to simultaneously build up an intuitive grasp along with proficiency with mathematical concepts. Introductory chapters on "What is statistical mechanics?" and "Random walks and emergent properties" are deceptively simple: the mathematical techniques employed in these chapters should be immediately accessible to senior level physics and engineering students. Yet by the end of Chapter 2, one finds oneself deriving a simple one-dimensional Fokker-Planck equation--a nontrivial application in statistical mechanics with applications in chemical kinetics, transport phenomena, mathematical biology, and finance.
This appeal to potentially broad applications is part of what makes this book unique. While a great number of important physical concepts are developed, this is really not an ordinary physics book. Instead, the tools and techniques of statistical mechanics are developed from an exceptionally broad perspective.
While I have worked very few of the problems, the end-of-chapter problems sets present deep and detailed questions that are critically integrated into the text. A reader who has the time and dedication to do the problems will gain much more than one who does not.
|