407 0

[英文文献] A Relational Model for Predicting Farm-Level Crop Yield Distributions in th... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-22
最后登录
2020-9-22

楼主
数理经济学649 发表于 2006-4-18 01:37:23 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:A Relational Model for Predicting Farm-Level Crop Yield Distributions in the Absence of Farm-Level Data
英文文献作者:Porth, Lysa,Tan, Ken Seng,Zhu, Wenjun
英文文献摘要:
Individual farm-level expected yields serve as the foundation for crop insurance design and rating. Therefore, constructing a reasonable, accurate, and robust model for the farm-level loss distribution is essential. Unfortunately, farm-level yield data is often insufficient or unavailable in many regions to conduct sound statistical inference, especially in developing countries. This paper develops a new two-step relational model to predict farm-level crop yield distributions in the absence of farm yield losses, through "borrowing" information from a neighbouring country, where detailed farm-level yield experience is available. The first step of the relational model defines a similarity measure based on a Euclidean metric to select an optimal county, considering weather information, average farm size, county size and county-level yield volatility. The second step links the selected county with the county to be predicted through modeling the dependence structures between the farm-level and county-level yield losses. Detailed farm-level and county-level corn yield data in the U.S. and Canada are used to empirically examine the performance of the proposed relational model. The results show that the approach developed in this paper may be useful in improving yield forecasts and pricing in the case where farm-level data is limited or not available. Further, this approach may also help to address the issue of aggregation bias, when county-level data is used as a substitute for farm-level data, which tend to result in underestimating the predicted risk relative to the true risk.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-18 04:31