楼主: CDA网校
884 0

机器学习中的回归算法(下)——CDA人工智能学院 [推广有奖]

管理员

已卖:189份资源

泰斗

3%

还不是VIP/贵宾

-

威望
3
论坛币
118687 个
通用积分
10372.7424
学术水平
278 点
热心指数
286 点
信用等级
253 点
经验
228186 点
帖子
6925
精华
19
在线时间
4377 小时
注册时间
2019-9-13
最后登录
2026-1-7

初级热心勋章

楼主
CDA网校 学生认证  发表于 2020-7-8 08:17:46 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
CDA人工智能学院致力于以优质的人工智能在线教育资源助力学员的DT职业梦想!课程内容涵盖数据分析、机器学习、深度学习、人工智能、TensorFlow、PyTorch、知识图谱等众多核心技术及行业案例,让每一个学员都可以在线灵活学习,快速掌握AI时代的前沿技术。PS:私信我即可获取《银牌会员》1个月免费试听机会

我们在上一篇文章中给大家介绍了机器学习中的回归算法的部分知识,其实机器学习中的回归算法的知识还是有很多的,我们在这篇文章中继续为大家介绍机器学习中的回归算法剩余部分知识,希望能够帮助到大家更好地了解人工智能。


首先我们说一下逻辑回归,逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,线型回归处理的问题类型与逻辑回归不一致。线性回归处理的是数值问题,也就是最后预测出的结果是数字,例如房价。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类。那么如何实现这种算法呢?在实现方面,逻辑回归只是对对线性回归的计算结果加上了一个Sigmoid函数,将数值结果转化为了0到1之间的概率(Sigmoid函数的图像一般来说并不直观,你只需要理解对数值越大,函数越逼近1,数值越小,函数越逼近0),接着我们根据这个概率可以做预测,例如概率大于0.5,则这封邮件就是垃圾邮件,或者肿瘤是否是恶性的等等。从直观上来说,逻辑回归是画出了一条分类线。


而逻辑回归的适用条件有四点,第一点就是因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于逻辑回归。第二点就是残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。第三点就是自变量和逻辑概率是线性关系。第四点就是各观测对象间相互独立。而逻辑回归算法划出的分类线基本都是线性的。当然也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量较大的时候效率会很低,这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。


我们在这篇文章中介绍了机器学习中的回归算法的知识,其实机器学习是人工智能中最重要的内容,而算法在机器学习中也是一个十分重要的内容,我们只有了解了这些算法知识才能够做好机器学习,这样才能够为人工智能奠定基础。想了解更多的人工智能的知识,请持续关注我们。

关注“CDA人工智能学院”,回复“录播”获取更多人工智能精选直播视频!


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人工智能 机器学习 CDA Tensor 最大似然法

微信图片_20200630091841.png (15.88 KB)

微信图片_20200630091841.png

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 17:13