楼主: xwjclr
1832 3

[回归分析求助] stata如何实现spss的步进回归 [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

硕士生

60%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0.0033
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
1166 点
帖子
54
精华
0
在线时间
255 小时
注册时间
2018-3-13
最后登录
2024-10-25

楼主
xwjclr 发表于 2020-7-8 20:32:16 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
向后是sw reg y x1 x2,pr(0.05)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Stata SPSS tata 如何实现 PSS

沙发
蓝色 发表于 2020-7-8 20:50:00
看sw命令的帮助或对应手册上解释
是不是pe选择

  1. [R] stepwise -- Stepwise estimation
  2.                 (View complete PDF manual entry)


  3. Syntax

  4.         stepwise [, options] : command

  5.     options             Description
  6.     -----------------------------------------------------------------------------------------
  7.     Model
  8.     * pr(#)             significance level for removal from the model
  9.     * pe(#)             significance level for addition to the model

  10.     Model2
  11.       forward           perform forward-stepwise selection
  12.       hierarchical      perform hierarchical selection
  13.       lockterm1         keep the first term
  14.       lr                perform likelihood-ratio test instead of Wald test

  15.     Reporting
  16.       display_options   control columns and column formats and line width
  17.     -----------------------------------------------------------------------------------------
  18.     * At least one of pr(#) or pe(#) must be specified.
  19.     by and xi are allowed; see prefix.
  20.     Weights are allowed if command allows them; see weight.
  21.     All postestimation commands behave as they would after command without the stepwise
  22.       prefix; see the postestimation manual entry for command.


  23. Menu

  24.     Statistics > Other > Stepwise estimation


  25. Description

  26.     stepwise performs stepwise estimation.  Typing

  27.         . stepwise, pr(#): command

  28.     performs backward-selection estimation for command.  The stepwise selection method is
  29.     determined by the following option combinations:

  30.     options                   Description
  31.     -----------------------------------------------------------------------------------------
  32.     pr(#)                     backward selection
  33.     pr(#) hierarchical        backward hierarchical selection
  34.     pr(#) pe(#)               backward stepwise

  35.     pe(#)                     forward selection
  36.     pe(#) hierarchical        forward hierarchical selection
  37.     pr(#) pe(#) forward       forward stepwise
  38.     -----------------------------------------------------------------------------------------

  39.     command defines the estimation command to be executed.  The following Stata commands are
  40.     supported by stepwise.

  41.         betareg, clogit, cloglog, glm, intreg, logistic, logit, nbreg, ologit, oprobit,
  42.         poisson, probit, qreg, regress, scobit, stcox, stcrreg, stintreg, streg, tobit

  43.     stepwise expects command to have the following form:

  44.         command_name [depvar] term [term ...] [if] [in] [weight] [, command_options]

  45.     where term is either varname or (varlist) (a varlist in parentheses indicates that this
  46.     group of variables is to be included or excluded together).  depvar is not present when
  47.     command_name is stcox, stcrreg, stintreg, or streg; otherwise, depvar is assumed to be
  48.     present.  For intreg, depvar is actually two dependent variable names (depvar1 and
  49.     depvar2).

  50.     sw is a synonym for stepwise.


  51. Links to PDF documentation

  52.         Quick start

  53.         Remarks and examples

  54.         Methods and formulas

  55.     The above sections are not included in this help file.


  56. Options

  57.         +-------+
  58.     ----+ Model +----------------------------------------------------------------------------

  59.     pr(#) specifies the significance level for removal from the model; terms with p>=pr() are
  60.         eligible for removal.

  61.     pe(#) specifies the significance level for addition to the model; terms with p<pe() are
  62.         eligible for addition.
复制代码

藤椅
xwjclr 发表于 2020-7-8 21:18:25
蓝色 发表于 2020-7-8 20:50
看sw命令的帮助或对应手册上解释
是不是pe选择
谢谢回复,看到通过显著性检验来剔除变量只有pr和pe,看来是做不到spss那种步进了

板凳
xwjclr 发表于 2020-7-9 08:52:12
又有个问题,有必要使用逐步回归吗,用reg回归最后的结果显著不就行了吗

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-2 17:46