楼主: pq366
6328 4

[Stata初级班] stata回归疑问 [推广有奖]

  • 2关注
  • 2粉丝

已卖:1份资源

教授

96%

还不是VIP/贵宾

-

威望
0
论坛币
2338 个
通用积分
0.0417
学术水平
2 点
热心指数
7 点
信用等级
0 点
经验
5185 点
帖子
249
精华
2
在线时间
2922 小时
注册时间
2004-11-29
最后登录
2025-12-9

楼主
pq366 发表于 2010-8-20 12:05:18 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
连老师好,又有几个问题,打搅您了
(1)在进行固定效应回归的时候,我的stata回归结果中没有报告F值,不知道是怎么回事?
(2)进行固定效应回归的时候,我将其结果与混合回归进行比较,得到的winthin_R2大于混合回归的R2,这个是否合理?
(3)面板回归的时候,对于共线性的关注是否很重要,我现在两个变量的vif已经有25了(使用collin命令测的),请问这个在面板中严重吗?
(4)回归的时候,我想对企业规模加入一个平方项,但企业规模与规模的平方项本身是高相关的,我想将规模这个变量先标准化,再将标准化之后的企业规模进行平方。那么进行回归的时候,其他的变量要不要也进行标准化呢?
   谢谢。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Stata tata 企业规模 固定效应 混合回归 Stata 疑问

沙发
arlionn 在职认证  发表于 2010-8-20 15:01:18
pq366 发表于 2010-8-20 12:05
连老师好,又有几个问题,打搅您了
(1)在进行固定效应回归的时候,我的stata回归结果中没有报告F值,不知道是怎么回事?
A: 还请贴出结果,以便判断。

(2)进行固定效应回归的时候,我将其结果与混合回归进行比较,得到的winthin_R2大于混合回归的R2,这个是否合理?
A: 这并没有一定的标准。不知你的数据是什么内容?N和T分别是多少?

(3)面板回归的时候,对于共线性的关注是否很重要,我现在两个变量的vif已经有25了(使用collin命令测的),请问这个在面板中严重吗?
A: 通常大家会报告各个变量的相关系数矩阵,相关系数大于0.5或0.6的变量比较可疑。至于VIF,大于25应该算比较高了吧这意味着用这个变量与其他解释变量进行回归,R2高达0.96。

(4)回归的时候,我想对企业规模加入一个平方项,但企业规模与规模的平方项本身是高相关的,我想将规模这个变量先标准化,再将标准化之后的企业规模进行平方。那么进行回归的时候,其他的变量要不要也进行标准化呢?
   谢谢。
A: 很多研究的确是直接加入size和size的平方项,忽略了对共线性问题的考虑。不知你如何进行标准化?标准化能克服二者高度共线性的问题吗?

藤椅
pq366 发表于 2010-8-20 23:55:58
(1)在进行固定效应回归的时候,我的stata回归结果中没有报告F值,不知道是怎么回事?
A: 还请贴出结果,以便判断。
我点击那个F值的时候,跳出一个页面,是如下描述的:我截取其中的一点内容是。我也不知道自己数据是哪里有问题,调了好多遍,不知是哪种情况。
The F or chi2 model statistic has been reported as missing
    Your estimation results show an F or chi2 model statistic reported to be
    missing.  Stata has done that so as to not be misleading, not because there is
    something necessarily wrong with your model.

Are any standard errors missing?
    If any standard errors are reported as dots, something is wrong with your
    model:  one or more coefficients could not be estimated in the normal
    statistical sense.  You need to address that problem and ignore the rest of
    this discussion.
Are you using bootstrap or jackknife?
    The VCE you have just estimated is not of sufficient rank to perform the model
    test.  This is most likely due to not having enough replications.
    The bootstrap command has a reps(#) option, and if # is less than the number
    of coefficients in the model, the VCE will have insufficient rank.  The
    solution is to rerun bootstrap with a much larger number of replications.
    The jackknife command estimates the VCE by refitting the model for each
    observation in the dataset, leaving the associated observation out of the
    estimation sample each time.  As with the conventional variance estimator, the
    VCE will be singular if the number of observations is less than the number of
    parameters.  See the following discussion if you supplied the cluster() option
    to jackknife.

Are you using a svy estimator or did you specify the vce(cluster clustvar) option?
    The VCE you have just estimated is not of sufficient rank to perform the model
    test.  As discussed in [R] test, the model test with clustered or survey data
    is distributed as F(k,d-k+1) or chi2(k), where k is the number of constraints
    and d=number of clusters or d=number of PSUs minus the number of strata.
    Since the rank of the VCE is at most d and the model test reserves 1 degree of
    freedom for the constant, at most d-1 constraints can be tested, so k must be
    less than d.  The model that you just fitted does not meet this requirement.
    To simplify the remaining discussion, let's consider the case of clustered
    data.  This discussion applies to survey estimation in general by
    substituting, "PSUs - strata" for "clusters".
    There is no mechanical problem with your model, but you need to consider
    carefully whether any of the reported standard errors mean anything.  The
    theory that justifies the standard error calculation is asymptotic in the
    number of clusters, and we have just established that you are estimating at
    least as many parameters as you have clusters.
    That concern aside, the model test statistic issue is that you cannot
    simultaneously test that all coefficients are zero because there is not enough
    information.  You could test a subset, but not all, and so Stata refuses to
    report the overall model test statistic.
    Here note the degrees of freedom reported for the chi2 or F.  You might see
    chi2(6) or F(6, 5).  If you were to count the number of coefficients that
    would be constrained to 0 in a model test in this case, you would find that
    number to be greater than 6.  You could find out what that number is by
    reestimating the model parameters without the vce(robust) and vce(cluster
    clustvar) options (or, for the survey commands, using the corresponding
    non-svy estimator).  In any case, the 6 reported is the maximum number of
    coefficients that could be simultaneously tested.

Is there a regressor that is nonzero for only 1 observation or for one cluster?
    The VCE you have just estimated is not of sufficient rank to perform the model
    test.  This can happen if there is a variable in your model that is nonzero
    for only 1 observation in the estimation sample.  Likewise, it can happen if a
    variable is nonzero for only one cluster when using the cluster-robust VCE.
    In such cases the derivative of the sum-of-squares or likelihood function with
    respect to that variable's parameter is zero for all observations.  That
    implies that the outer-product-of-gradients (OPG) variance matrix is singular.
    Since the OPG variance matrix is used in computing the robust variance matrix,
    the latter is therefore singular as well.

(2)进行固定效应回归的时候,我将其结果与混合回归进行比较,得到的winthin_R2大于混合回归的R2,这个是否合理?
A: 这并没有一定的标准。不知你的数据是什么内容?N和T分别是多少?

我的数据时企业的研发投入的数据,有的企业披露了,有的企业没有披露,我是从年报中搜取了那些已经公布企业研发支出的企业资料作为研究的样本的。一共是7年的数据,总共数据有2000多。

(3)面板回归的时候,对于共线性的关注是否很重要,我现在两个变量的vif已经有25了(使用collin命令测的),请问这个在面板中严重吗?
A: 通常大家会报告各个变量的相关系数矩阵,相关系数大于0.5或0.6的变量比较可疑。至于VIF,大于25应该算比较高了吧这意味着用这个变量与其他解释变量进行回归,R2高达0.96。

谢谢连老师答复。

(4)回归的时候,我想对企业规模加入一个平方项,但企业规模与规模的平方项本身是高相关的,我想将规模这个变量先标准化,再将标准化之后的企业规模进行平方。那么进行回归的时候,其他的变量要不要也进行标准化呢?
   谢谢。
A: 很多研究的确是直接加入size和size的平方项,忽略了对共线性问题的考虑。不知你如何进行标准化?标准化能克服二者高度共线性的问题吗?

我理解错了。那在有平方项的情况下,就不需要考虑共线性了,是把。

非常感谢连老师的及时答复。
谢谢,祝您一切都好!

板凳
pq366 发表于 2010-8-21 05:41:00
刚才为什么没有F值调试清楚了,因为其中一个虚拟变量在2006年只有一个取值。感谢连老师的帮助。

报纸
arlionn 在职认证  发表于 2010-8-21 11:11:39
那现在基本上就是这个状况了,应该没有什么问题了吧,呵呵。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-9 07:13