楼主: lnlhckao123
6245 5

求检验均匀分布,二项分布,泊松分布的SAS程序 [推广有奖]

  • 0关注
  • 3粉丝

副教授

62%

还不是VIP/贵宾

-

威望
0
论坛币
14810 个
通用积分
10.6125
学术水平
7 点
热心指数
4 点
信用等级
4 点
经验
12566 点
帖子
754
精华
0
在线时间
405 小时
注册时间
2010-8-21
最后登录
2025-6-7

楼主
lnlhckao123 发表于 2010-10-6 17:03:38 |AI写论文
25论坛币
求检验均匀分布,二项分布,泊松分布的SAS程序,谢谢各位高手指点!

关键词:sas程序 均匀分布 二项分布 泊松分布 高手指点 程序 SAS 二项分布 泊松分布 均匀分布

回帖推荐

823317513 发表于3楼  查看完整内容

Usage Note 22427: Can I test for Uniform distribution? Details About Rate It Yes. The Uniform distribution is a special case of the Beta distribution with α = β = 1. You can test that the data are from a uniform distribution in PROC UNIVARIATE or in SAS/QC PROC CAPABILITY. In any of the statements that accept distribution options (such as the HISTOGRAM statement), use the options A=1 and B= ...

本帖被以下文库推荐

即使在人大经济论坛这个网络世界,我仍以真诚为基础与我的好友进行交往!

沙发
走了算了 发表于 2012-5-13 14:20:15
兄弟,你的泊松分布的验证解决了没。求助啊。。。。

藤椅
823317513 发表于 2012-5-13 15:00:53
Usage Note 22427: Can I test for Uniform distribution?
Details        About        Rate It       

Yes. The Uniform distribution is a special case of the Beta distribution with α = β = 1. You can test that the data are from a uniform distribution in PROC UNIVARIATE or in SAS/QC PROC CAPABILITY. In any of the statements that accept distribution options (such as the HISTOGRAM statement), use the options A=1 and B=1 with the BETA distribution option to test for uniformity. Use the THETA= and SIGMA= options to establish the lower and upper limits of support. Set THETA= to the lower limit. Set SIGMA= to the range between the upper and lower limits. For instance, to test that the input data are distributed U(10,25), specify the option:   BETA(A=1 B=1 THETA=10 SIGMA=15).
------------------------------------------------------------------------------------------------------------------------------
For poissson
Re: How to test Poisson Distribution?

Paul R Swank
Tue, 28 May 2002 11:47:07 -0700

Why can't you run a poisson regression model with no predictors and look at
the fit of the model. I generated 1000 Poisson x's and then fit to a poisson
using genmod in sas. The Pearson chi-square below is not significant
indicating fit. the mean is exp(intercept) = exp(-0.0253) = .975 which is
close to the mean of 1 that I specified.

                                    The GENMOD Procedure

                                      Model Information

                               Data Set              WORK.TEMP1
                               Distribution             Poisson
                               Link Function                Log
                               Dependent Variable             y
                               Observations Used           1000


                            Criteria For Assessing Goodness Of Fit

                 Criterion                 DF           Value
Value/DF

                 Deviance                 999       1143.3883
1.1445
                 Scaled Deviance          999       1143.3883
1.1445
                 Pearson Chi-Square       999        993.2051
0.9942
                 Scaled Pearson X2        999        993.2051
0.9942
                 Log Likelihood                     -999.6849


          Algorithm converged.


                               Analysis Of Parameter Estimates

                                  Standard     Wald 95% Confidence
Chi-
   Parameter    DF    Estimate       Error           Limits
Square    Pr > ChiSq

   Intercept     1     -0.0253      0.0320     -0.0881      0.0375
0.62        0.4292
   Scale         0      1.0000      0.0000      1.0000      1.0000
NOTE: The scale parameter was held fixed..
Paul R. Swank, Ph.D.
Professor, Developmental Pediatrics
Medical School
UT Health Science Center at Houston



-----Original Message-----
From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED]]On
Behalf Of Chia C Chong
Sent: Sunday, May 26, 2002 5:38 PM
To: [EMAIL PROTECTED]
Subject: How to test Poisson Distribution?


I have a random variable,X with 1000 samples (all discrete values). I want
to test whether X can sastify a Poisson process or not. How should I test
it?

THanks.
CCC


.
.
Instructions for joining and leaving this list, remarks about the
problem of INAPPROPRIATE MESSAGES, and archives are available at:
.                  http://jse.stat.ncsu.edu/                    .
Instructions for joining and leaving this list, remarks about the
problem of INAPPROPRIATE MESSAGES, and archives are available at:
.                  http://jse.stat.ncsu.edu/                    .

--------------------------------------------

For bionomial distribution
http://www.ats.ucla.edu/stat/sas/whatstat/whatstat.htm
Binomial test

    A one sample binomial test allows us to test whether the proportion of successes on a two-level categorical dependent variable significantly differs from a hypothesized value.  For example, using the hsb2 data file, say we wish to test whether the proportion of females (female) differs significantly from 50%, i.e., from .5.  We will use the exact statement to produce the exact p-values.

    proc freq data = "c:\mydata\hsb2";
      tables female / binomial(p=.5);
      exact binomial;
    run;

    The FREQ Procedure

                                       Cumulative    Cumulative
    female    Frequency     Percent     Frequency      Percent
    -----------------------------------------------------------
         0          91       45.50            91        45.50
         1         109       54.50           200       100.00

    Binomial Proportion for female = 0
    -----------------------------------
    Proportion (P)               0.4550
    ASE                          0.0352
    95% Lower Conf Limit         0.3860
    95% Upper Conf Limit         0.5240

    Exact Conf Limits
    95% Lower Conf Limit         0.3846
    95% Upper Conf Limit         0.5267

       Test of H0: Proportion = 0.5

    ASE under H0                 0.0354
    Z                           -1.2728
    One-sided Pr <  Z            0.1015
    Two-sided Pr > |Z|           0.2031

    Exact Test
    One-sided Pr <=  P           0.1146
    Two-sided = 2 * One-sided    0.2292

    Sample Size = 200

    The results indicate that there is no statistically significant difference (p = .2292).  In other words, the proportion of females in this sample does not significantly differ from the hypothesized value of 50%.

====================================================

已有 2 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
天堂的狗坚强 + 1 + 1 + 1 好的意见建议
胖胖小龟宝 + 10 + 10 热心帮助其他会员

总评分: 经验 + 10  论坛币 + 10  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

板凳
823317513 发表于 2012-5-13 15:01:55
823317513 发表于 2012-5-13 15:00
Usage Note 22427: Can I test for Uniform distribution?
Details        About        Rate It
There are other tests, pleae refer to http://www.ats.ucla.edu/stat/sas/whatstat/whatstat.htm

报纸
Cemoony 发表于 2014-5-2 14:17:12
thanks for sharing

地板
天堂的狗坚强 发表于 2017-12-4 22:08:24
823317513 发表于 2012-5-13 15:00
Usage Note 22427: Can I test for Uniform distribution?
Details        About        Rate It
谢谢啦!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-25 12:59