楼主: zhangtao
2528 1

[学科前沿] Latin Hypercube Sample [推广有奖]

  • 3关注
  • 42粉丝

已卖:431份资源

学科带头人

41%

还不是VIP/贵宾

-

威望
0
论坛币
2302 个
通用积分
908.3324
学术水平
114 点
热心指数
120 点
信用等级
83 点
经验
52009 点
帖子
1552
精华
1
在线时间
2357 小时
注册时间
2005-1-13
最后登录
2024-5-21

楼主
zhangtao 发表于 2011-2-4 22:21:51 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
什么是Latin Hypercube Sample ?谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Hypercube Sample hyper latin AMPL

回帖推荐

skyufly 发表于2楼  查看完整内容

是一个统计模型,给LZ复制一个wikipedia英文解释 Latin hypercube sampling (LHS) is a statistical method for generating a distribution of plausible collections of parameter values from a multidimensional distribution. The sampling method is often applied in uncertainty analysis. The technique was first described by McKay in 1979.[1] It was further elaborated by Ronald L. Iman, and others[2] in 1981. ...

本帖被以下文库推荐

沙发
skyufly 发表于 2011-2-5 00:03:49
是一个统计模型,给LZ复制一个wikipedia英文解释
Latin hypercube sampling (LHS) is a statistical method for generating a distribution of plausible collections of parameter values from a multidimensional distribution. The sampling method is often applied in uncertainty analysis.
The technique was first described by McKay in 1979.[1] It was further elaborated by Ronald L. Iman, and others[2] in 1981. Detailed computer codes and manuals were later published.[3]
In the context of statistical sampling, a square grid containing sample positions is a Latin square if (and only if) there is only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary number of dimensions, whereby each sample is the only one in each axis-aligned hyperplane containing it.
When sampling a function of N variables, the range of each variable is divided into M equally probable intervals. M sample points are then placed to satisfy the Latin hypercube requirements; note that this forces the number of divisions, M, to be equal for each variable. Also note that this sampling scheme does not require more samples for more dimensions (variables); this independence is one of the main advantages of this sampling scheme. Another advantage is that random samples can be taken one at a time, remembering which samples were taken so far.
The maximum number of combinations for a Latin Hypercube of M divisions and N variables (i.e., dimensions) can be computed with the following formula:

For example, a Latin hypercube of M = 4 divisions with N = 2 variables (i.e., a square) will have 24 possible combinations. A Latin hypercube of M = 4 divisions with N = 3 variables (i.e., a cube) will have 576 possible combinations.
Orthogonal sampling adds the requirement that the entire sample space must be sampled evenly. Although more efficient, orthogonal sampling strategy is more difficult to implement since all random samples must be generated simultaneously.

In two dimensions the difference between random sampling, Latin Hypercube sampling and orthogonal sampling can be explained as follows:
  • In random sampling new sample points are generated without taking into account the previously generated sample points. One does thus not necessarily need to know beforehand how many sample points are needed.
  • In Latin Hypercube sampling one must first decide how many sample points to use and for each sample point remember in which row and column the sample point was taken.
  • In Orthogonal Sampling, the sample space is divided into equally probable subspaces, the figure above showing four subspaces. All sample points are then chosen simultaneously making sure that the total ensemble of sample points is a Latin Hypercube sample and that each subspace is sampled with the same density.
Thus, orthogonal sampling ensures that the ensemble of random numbers is a very good representative of the real variability, LHS ensures that the ensemble of random numbers is representative of the real variability whereas traditional random sampling (sometimes called brute force) is just an ensemble of random numbers without any guarantees.
已有 1 人评分经验 论坛币 收起 理由
胖胖小龟宝 + 10 + 10 热心帮助其他会员

总评分: 经验 + 10  论坛币 + 10   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-2 04:19