解:
由于
$\begin{align*}\frac{1}{1+\frac{1}{n}}\cdot \frac{1}{n}(\sin \frac{\pi}{n}+\sin \frac{2\pi}{n}+\cdots +\sin \frac{n\pi}{n})&\leq \frac{\sin \frac{\pi}{n}}{n^2+1}+\frac{\sin \frac{2\pi}{n}}{n^2+2}+\cdots +\frac{\sin \frac{n\pi}{n}}{n^2+n}\\\\&\leq \frac{1}{1+\frac{1}{n^2}}\cdot \frac{1}{n}(\sin \frac{\pi}{n}+\sin \frac{2\pi}{n}+\cdots +\sin \frac{n\pi}{n}).\end{align*}$
又
$\displaystyle \because \lim_{n \to \infty }\frac{1}{n}(\sin \frac{\pi}{n}+\sin \frac{2\pi}{n}+\cdots +\sin \frac{n\pi}{n})=\int_{0}^{1}\sin x\pi dx=\frac{2}{\pi}.$
$\displaystyle \therefore \lim_{n \to \infty }(\frac{\sin \frac{\pi}{n}}{n^2+1}+\frac{\sin \frac{2\pi}{n}}{n^2+2}+\cdots +\frac{\sin \frac{n\pi}{n}}{n^2+n})=\frac{2}{\pi}.$


雷达卡
京公网安备 11010802022788号







