解:
$\displaystyle \because \phi (x)=\int_{0}^{1}f(xt)dt,$
$\displaystyle \therefore \phi (0)=f(0).$
因而
$\displaystyle \phi '(0)=\lim_{x\to 0}\frac{\phi (x)-\phi (0)}{x-0}=\lim_{x\to 0}\int_{0}^{1}\frac{f(xt)-f(0)}{x}dt=f'(0)\int_{0}^{1}tdt=\frac{1}{2}f'(0).$
又
$\begin{align*}\because \phi'(x)&=\int_{0}^{1}tf'(xt)dt=\frac{1}{x}\int_{0}^{1}tdf(xt)\\\\&=\frac{1}{x}tf(xt)|_0^1-\frac{1}{x}\int_{0}^{1}f(xt)dt\\\\&=\frac{f(x)}{x}-\int_{0}^{1}\frac{f(xt)}{x}dt,\end{align*}$
再由已知极限条件
$\displaystyle \therefore \lim_{x\to 0}\phi'(x)=\lim_{x\to 0}\frac{f(x)}{x}-\lim_{x\to 0}\int_{0}^{1}\frac{f(xt)}{x}dt=A-A\int_{0}^{1}tdt=\frac{1}{2}A.$
由此可知,当$f'(0)=A$时,$\phi'(x)$在$x=0$处连续。而$f'(0)\neq A$时,$\phi'(x)$在$x=0$处不连续。


雷达卡
京公网安备 11010802022788号







