楼主: tulipsliu
8590 294

[学科前沿] [QuantEcon]MATLAB混编FORTRAN语言 [推广有奖]

251
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:18:02
$$
\Phi(L){(1 - L)^d}({y_t} - {\mu _t}) = \Theta (L){\varepsilon _t},
$$

252
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:18:42
$$
{\mu _t} = \mu  + \sum\limits_{i = 1}^{m - n} {{\delta _i}} {x_{i,t}} + \sum\limits_{i = m - n + 1}^m {\delta _i}{x_{i,t}}{\sigma _t} + \xi \sigma _t^k,
$$

253
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:19:13
$$
{z_t}(\theta ) = \frac{{{y_t} - \mu (\theta ,{x_t})}}{{\sigma (\theta ,{x_t})}},
$$

254
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:19:58
$$
\sigma _t^2 = \left( {\omega  + \sum\limits_{j = 1}^m {{\zeta _j}{v_{jt}}} } \right) + \sum\limits_{j = 1}^q {{\alpha _j}\varepsilon _{t - j}^2 + } \sum\limits_{j = 1}^p {{\beta _j}\sigma _{t - j}^2},
$$
with $\sigma_t^2$ denoting the conditional variance, $\omega$ the intercept
and $\varepsilon_t^2$ the residuals from the mean filtration process discussed
previously. The GARCH order is defined by $(q, p)$ (ARCH, GARCH), with possibly
\verb@m@ external regressors $v_j$ which are passed \emph{pre-lagged}.
If variance targeting is used, then $\omega$ is replaced by,

255
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:20:49
$$
{{\bar \sigma }^2}\left( {1 - \hat P} \right) - \sum\limits_{j = 1}^m {{\zeta _j}{{\bar v}_j}}
$$

where ${\bar \sigma}^2$ is the unconditional variance of $\varepsilon^2$ which
is consistently estimated by its sample counterpart at every iteration of the
solver following the mean equation filtration, and ${\bar v}_j$ represents the
sample mean of the $j^{th}$ external regressors in the variance equation
(assuming stationarity), and $\hat P$ is the persistence and defined below. If a
numeric value was provided to the \emph{variance.targeting} option in the specification
(instead of logical), this will be used instead of ${\bar \sigma }^2$ for the
calculation.\footnote{Note that this should represent a value related to the variance
in the plain vanilla GARCH model. In more general models such as the APARCH, this is
a value related to $\sigma^{\delta}$, which may not be obvious since $\delta$ is not
known prior to estimation, and therefore care should be taken in those cases.
Finally, if scaling is  used in the estimation (via the fit.control option), this value will
also be automatically scale adjusted by the routine.}

256
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:21:09
$$
\hat P = \sum\limits_{j = 1}^q {{\alpha _j}}  + \sum\limits_{j = 1}^p {{\beta _j}}.
$$

257
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:22:05
$$
{\log _e}\left( {\sigma _t^2} \right) = \left( {\omega  + \sum\limits_{j = 1}^m {{\zeta _j}{v_{jt}}} } \right) + \sum\limits_{j = 1}^q {\left( {{\alpha _j}{z_{t - j}} + {\gamma _j}\left( {\left| {{z_{t - j}}} \right| - E\left| {{z_{t - j}}} \right|} \right)} \right) + } \sum\limits_{j = 1}^p {{\beta _j}{{\log }_e}\left( {\sigma _{t - j}^2} \right)}
$$

258
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:23:01
$$ \hat P = \sum\limits_{j = 1}^q {{\alpha _j}}  + \sum\limits_{j = 1}^p {{\beta _j} + } \sum\limits_{j = 1}^q {{\gamma _j}\kappa }, $$

259
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:24:06
$$
\sigma _t^\delta  = \left( {\omega  + \sum\limits_{j = 1}^m {{\zeta _j}{v_{jt}}} } \right) + \sum\limits_{j = 1}^q {{\alpha _j}{{\left( {\left| {{\varepsilon _{t - j}}} \right| - {\gamma _j}{\varepsilon _{t - j}}} \right)}^\delta } + } \sum\limits_{j = 1}^p {{\beta _j}\sigma _{t - j}^\delta }
$$

260
tulipsliu(未真实交易用户) 在职认证  发表于 2021-1-2 08:24:59
$$
\sigma _t^\lambda  = \left( {\omega  + \sum\limits_{j = 1}^m {{\zeta _j}{v_{jt}}} } \right) + \sum\limits_{j = 1}^q {{\alpha _j}\sigma _{t - j}^\lambda {{\left( {\left| {{z_{t - j}} - {\eta _{2j}}} \right| - {\eta _{1j}}\left( {{z_{t - j}} - {\eta _{2j}}} \right)} \right)}^\delta } + } \sum\limits_{j = 1}^p {{\beta _j}\sigma _{t - j}^\lambda }
$$

which is a Box-Cox transformation for the conditional standard deviation whose
shape is determined by $\lambda$, and the parameter $\delta$ transforms the
absolute value function which it subject to rotations and shifts through the
$\eta_{1j}$ and $\eta_{2j}$ parameters respectively. Various submodels arise
from this model, and are passed to the \verb@ugarchspec@ 'variance.model' list
via the submodel option,

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-27 04:38