|
$$
\begin{gathered}
{Y_t} = \left[ {\begin{array}{*{20}{c}}
{\log \sigma _t^2} \\
. \\
. \\
. \\
{\log \sigma _{t - p + 1}^2} \\
{\log {r_t}} \\
. \\
. \\
{\log {r_{t - q + 1}}} \\
\end{array} } \right],A = \left( {\begin{array}{*{20}{c}}
{\left( {{\beta _1},...,{\beta _p}} \right)} & {\left( {{\alpha _1},...,{\alpha _q}} \right)} \\
{\left( {{I_{p - 1 \times p - 1}},{0_{p - 1 \times 1}}} \right)} & {{0_{p - 1 \times q}}} \\
{\delta \left( {{\beta _1},...,{\beta _p}} \right)} & {\delta \left( {{\alpha _1},...,{\alpha _q}} \right)} \\
{{0_{q - 1 \times p}}} & {\left( {{I_{q - 1 \times q - 1}},{0_{q - 1 \times 1}}} \right)} \\
\end{array} } \right),b = \left( {\begin{array}{*{20}{c}}
\omega \\
{{0_{p - 1 \times 1}}} \\
{\xi + \delta \omega } \\
{{0_{q - 1 \times 1}}} \\
\end{array} } \right) \hfill \\
{\varepsilon _t} = \left( {\begin{array}{*{20}{c}}
{{0_{p \times 1}}} \\
{\tau \left( {{z_t}} \right) + {u_t}} \\
{{0_{q \times 1}}} \\
\end{array} } \right) \hfill \\
\end{gathered}
$$
|