- webuse grunfeld,clear
- . reg invest mvalue kstock i.company i.year,vce(cl company)
- Linear regression Number of obs = 200
- F(8, 9) = .
- Prob > F = .
- R-squared = 0.9517
- Root MSE = 51.725
- (Std. Err. adjusted for 10 clusters in company)
- ------------------------------------------------------------------------------
- | Robust
- invest | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | 0.118 0.011 10.60 0.000 0.093 0.143
- kstock | 0.358 0.049 7.29 0.000 0.247 0.469
- ------------------------------------------------------------------------------
- . areg invest mvalue kstock i.year,a(company) cl(company)
- Linear regression, absorbing indicators Number of obs = 200
- Absorbed variable: company No. of categories = 10
- F( 9, 9) = .
- Prob > F = .
- R-squared = 0.9517
- Adj R-squared = 0.9431
- Root MSE = 49.9805
- (Std. Err. adjusted for 10 clusters in company)
- ------------------------------------------------------------------------------
- | Robust
- invest | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | 0.118 0.011 10.60 0.000 0.093 0.143
- kstock | 0.358 0.049 7.29 0.000 0.247 0.46
- _cons | -32.836 20.303 -1.62 0.140 -78.764 13.091
- ------------------------------------------------------------------------------
- . xtreg invest mvalue kstock i.year,fe r
- Fixed-effects (within) regression Number of obs = 200
- Group variable: company Number of groups = 10
- R-sq: Obs per group:
- within = 0.7985 min = 20
- between = 0.8143 avg = 20.0
- overall = 0.8068 max = 20
- F(9,9) = .
- corr(u_i, Xb) = -0.3250 Prob > F = .
- (Std. Err. adjusted for 10 clusters in company)
- ------------------------------------------------------------------------------
- | Robust
- invest | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | 0.118 0.011 10.88 0.000 0.093 0.142
- kstock | 0.358 0.048 7.48 0.000 0.250 0.466
- _cons | -32.836 19.783 -1.66 0.131 -77.588 11.915
- -------------+----------------------------------------------------------------
- sigma_u | 91.798268
- sigma_e | 51.724523
- rho | .75902159 (fraction of variance due to u_i)
- ------------------------------------------------------------------------------
- . reghdfe invest mvalue kstock,a(company year) cl(company)
- (MWFE estimator converged in 2 iterations)
- HDFE Linear regression Number of obs = 200
- Absorbing 2 HDFE groups F( 2, 9) = 60.08
- Statistics robust to heteroskedasticity Prob > F = 0.0000
- R-squared = 0.9517
- Adj R-squared = 0.9431
- Within R-sq. = 0.7201
- Number of clusters (company) = 10 Root MSE = 51.7245
- (Std. Err. adjusted for 10 clusters in company)
- ------------------------------------------------------------------------------
- | Robust
- invest | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | 0.118 0.011 10.88 0.000 0.093 0.142
- kstock | 0.358 0.048 7.48 0.000 0.250 0.466
- _cons | -80.164 22.192 -3.61 0.006 -130.365 -29.963
- ------------------------------------------------------------------------------
- Absorbed degrees of freedom:
- -----------------------------------------------------+
- Absorbed FE | Categories - Redundant = Num. Coefs |
- -------------+---------------------------------------|
- company | 10 10 0 *|
- year | 20 1 19 |
- -----------------------------------------------------+
- * = FE nested within cluster; treated as redundant for DoF computation
我们发现上述四种方案得到的系数是完全一样的,但标准误却有差异。reg和areg结果完全一致,而xtreg和reghdfe结果是一样的额,但标准误比前两者要小,t值更大,也就是说更容易显著,reg和areg结果更为保守。实际上,如果在xtreg中加入选项“dfadj”进行自由度调整,其得到的标准误就会与areg和reg一致了。有人认为,xtreg,fe r可能没有调整自由度。
- . xtreg invest mvalue kstock i.year,fe r dfadj //加dfadj自由度调整
- Fixed-effects (within) regression Number of obs = 200
- Group variable: company Number of groups = 10
- R-sq: within = 0.7985 Obs per group: min = 20
- between = 0.8143 avg = 20.0
- overall = 0.8068 max = 20
- F(9,9) = .
- corr(u_i, Xb) = -0.3250 Prob > F = .
- (Std. Err. adjusted for 10 clusters in company)
- ------------------------------------------------------------------------------
- | Robust
- invest | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | 0.118 0.011 10.60 0.000 0.093 0.143
- kstock | 0.358 0.049 7.29 0.000 0.247 0.469
- _cons | -32.836 20.303 -1.62 0.140 -78.764 13.091
- -------------+----------------------------------------------------------------
- sigma_u | 91.798268
- sigma_e | 51.724523
- rho | .75902159 (fraction of variance due to u_i)
- ------------------------------------------------------------------------------
- 可以发现,加dfadj选项后,xtreg的结果与areg和reg的结果一致。
结语:reg、areg与xtreg,fe r dfadj得到的标准误是一致的,而xtreg,fe r与reghdfe得到的标准误是一致的,前者比较保守,后者更容易显著。至于究竟哪一种标准是正确的,目前还没有得到一致的答案,据伍德里奇所说,大多数情况下,他更倾向于后者,也就是当固定效应控制层面嵌套在聚类层面中时,xtreg,fe r与reghdfe的标准误更好。对此,你有什么看法呢?欢迎留言讨论。


雷达卡





京公网安备 11010802022788号







