计算机视觉-物体检测实战
网盘地址:https://pan.baidu.com/s/1n3xWmxVwFdEITf0JjT-NXw 提取码: s92y
备用地址(腾讯微云):https://share.weiyun.com/7TUN7UAe 密码:ttb7x5
分享一套物体检测课程——计算机视觉-物体检测实战
物体检测实战课程旨在帮助同学们快速掌握当下计算机视觉领域主流检测算法及其实例应用。所有算法均选自实际企业项目中常用架构,通俗讲解算法原理并结合论文进行实例分析。实战部分详细解读源码中各核心模块实现方法,带领小伙伴们从源码角度掌握算法实现全部流程及其配置与应用方法,提供全部数据集与所需代码。
物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。从传统的人工设计特征加浅层分类器的框架,到基于深度学习的端到端的检测框架,物体检测一步步变得愈加成熟
在传统视觉领域,物体检测是一个非常热门的研究方向。受70年代落后的技术条件和有限应用场景的影响,物体检测直到上个世纪90年代才开始逐渐走入正轨。物体检测对于人眼来说并不困难,通过对图片中不同颜色、纹理、边缘模块的感知很容易定位出目标物体,但计算机面对的是RGB像素矩阵,很难从图像中直接得到狗和猫这样的抽象概念并定位其位置,再加上物体姿态、光照和复杂背景混杂在一起,使得物体检测更加困难。
检测算法里面通常包含三个部分,第一个是检测窗口的选择, 第二个是特征的设计,第三个是分类器的设计。随着2001年Viola Jones提出基于Adaboost 的人脸检测方法以来,物体检测算法经历了传统的人工设计特征加浅层分类器的框架,到基于大数据和深度神经网络的End-To-End的物体检测框架,物体检测一步步变得愈加成熟。