- A. Tarantola.pdfContents
Preface xi
1 The General Discrete Inverse Problem 1
1.1 ModelSpaceandDataSpace ...................... 1 1.2 StatesofInformation .......................... 6 1.3 ForwardProblem ............................ 20 1.4 MeasurementsandAPrioriInformation . . . . . . . . . . . . . . . . 24 1.5 DefiningtheSolutionoftheInverseProblem . . . . . . . . . . . . . . 32 1.6 UsingtheSolutionoftheInverseProblem . . . . . . . . . . . . . . . 37
2 Monte Carlo Methods 41
2.1 Introduction ............................... 41 2.2 TheMovieStrategyforInverseProblems . . . . . . . . . . . . . . . . 44 2.3 SamplingMethods............................ 48 2.4 MonteCarloSolutiontoInverseProblems . . . . . . . . . . . . . . . 51 2.5 SimulatedAnnealing .......................... 54
3 The Least-Squares Criterion 57
3.1 Preamble: TheMathematicsofLinearSpaces . . . . . . . . . . . . . 57 3.2 TheLeast-SquaresProblem....................... 62 3.3 EstimatingPosteriorUncertainties ................... 70 3.4 Least-SquaresGradientandHessian .................. 75
4 Least-Absolute-Values Criterion and Minimax Criterion 81
4.1 Introduction ............................... 81 4.2 Preamble:lp-Norms........................... 82 4.3 Thelp-NormProblem.......................... 86 4.4 Thel1-NormCriterionforInverseProblems . . . . . . . . . . . . . . 89 4.5 Thel∞-NormCriterionforInverseProblems. . . . . . . . . . . . . . 96
5 Functional Inverse Problems 101
5.1 RandomFunctions............................101 5.2 SolutionofGeneralInverseProblems. . . . . . . . . . . . . . . . . .108 5.3 IntroductiontoFunctionalLeastSquares . . . . . . . . . . . . . . . . 108 5.4 Derivative and Transpose Operators in Functional Spaces . . . . . . . 119
vii
viii
Contents
6
7
Appendices
6.1 Volumetric Probability and Probability Density . . . . 6.2 Homogeneous Probability Distributions . . . . . . . . 6.3 Homogeneous Distribution for Elastic Parameters . . 6.4 Homogeneous Distribution for Second-Rank Tensors 6.5 Central Estimators and Estimators of Dispersion . . . 6.6 GeneralizedGaussian ..........................174 6.7 Log-NormalProbabilityDensity ....................175 6.8 Chi-SquaredProbabilityDensity ....................177 6.9 MonteCarloMethodofNumericalIntegration . . . . . . . . . . . . . 179 6.10 SequentialRandomRealization.....................181 6.11 CascadedMetropolisAlgorithm.....................182 6.12 DistanceandNorm ...........................183 6.13 TheDifferentMeaningsoftheWordKernel . . . . . . . . . . . . . . 183 6.14 TransposeandAdjointofaDifferentialOperator . . . . . . . . . . . . 184 6.15 TheBayesianViewpointofBackus(1970) . . . . . . . . . . . . . . . 190 6.16 TheMethodofBackusandGilbert ...................191 6.17 DisjunctionandConjunctionofProbabilities . . . . . . . . . . . . . . 195 6.18 PartitionofDataintoSubsets ......................197 6.19 MarginalizinginLinearLeastSquares . . . . . . . . . . . . . . . . .200 6.20 RelativeInformationofTwoGaussians . . . . . . . . . . . . . . . . .201 6.21 ConvolutionofTwoGaussians .....................202 6.22 Gradient-BasedOptimizationAlgorithms. . . . . . . . . . . . . . . .203 6.23 ElementsofLinearProgramming....................223 6.24 SpacesandOperators ..........................230 6.25 UsualFunctionalSpaces.........................242 6.26 MaximumEntropyProbabilityDensity . . . . . . . . . . . . . . . . .245 6.27 TwoPropertiesoflp-Norms.......................246 6.28 DiscreteDerivativeOperator ......................247 6.29 LagrangeParameters ..........................249 6.30 MatrixIdentities.............................249 6.31 InverseofaPartitionedMatrix .....................250 6.32 NormoftheGeneralizedGaussian ...................250
Problems 253
5.5 5.6 5.7 5.8
GeneralLeast-SquaresInversion ....................133
Example: X-Ray Tomography as an Inverse Problem Example: Travel-Time Tomography . . . . . . . . . Example: Nonlinear Inversion of Elastic Waveforms .
......... 140 . . . . . . . . . 143 . . . . . . . . . 144
159
7.1 Estimation of the Epicentral Coordinates of a Seismic Event 7.2 MeasuringtheAccelerationofGravity . . . . . . . . . . . 7.3 ElementaryApproachtoTomography. . . . . . . . . . . . 7.4 Linear Regression with Rounding Errors . . . . . . . . . . 7.5 UsualLeast-SquaresRegression. . . . . . . . . . . . . . . 7.6 Least-Squares Regression with Uncertainties in Both Axes
......253 ......256 ......259 ......266 ......269 ......273
......... 159 ......... 160 ......... 164 ......... 170 ......... 170
Contents ix
7.7 LinearRegressionwithanOutlier....................275 7.8 Condition Number and A Posteriori Uncertainties . . . . . . . . . . . 279 7.9 ConjunctionofTwoProbabilityDistributions. . . . . . . . . . . . . . 285
7.10 Adjoint of a Covariance Operator . 7.11 Problem7.1Revisited . . . . . . . 7.12 Problem7.3Revisited . . . . . . . 7.13 An Example of Partial Derivatives 7.14 Shapesofthelp-NormMisfitFunctions . . . . . . . . . . . . . . . .290 7.15 UsingtheSimplexMethod .......................293 7.16 Problem7.7Revisited..........................295 7.17 GeodeticAdjustmentwithOutliers ...................296
7.18 InversionofAcousticWaveforms.............. 7.19 UsingtheBackusandGilbertMethod. . . . . . . . . . . . 7.20 The Coefficients in the Backus and Gilbert Method . . . . . 7.21 The Norm Associated with the 1D Exponential Covariance 7.22 The Norm Associated with the 1D Random Walk . . . . . 7.23 The Norm Associated with the 3D Exponential Covariance
References and References for General Reading Index
......297 ......304 ...... 308 ...... 308 ...... 311 ...... 313
317 333
Inverse Problem Theory and Methods for Model Parameter Estimation.pdf
(15.32 MB, 需要: 5 个论坛币)


雷达卡



谢谢分享
京公网安备 11010802022788号







