楼主: luxiaoping2000
2562 2

[pdf下载]Inverse Problem Theory and Methods for Model Parameter Estimation [推广有奖]

  • 2关注
  • 0粉丝

已卖:73份资源

高中生

57%

还不是VIP/贵宾

-

威望
0
论坛币
158 个
通用积分
22.8252
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
1039 点
帖子
27
精华
0
在线时间
35 小时
注册时间
2009-2-13
最后登录
2021-9-11

楼主
luxiaoping2000 发表于 2011-4-1 15:47:45 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Inverse Problem Theory and Methods for Model Parameter Estimation
- A. Tarantola.pdfContents
Preface    xi
1    The General Discrete Inverse Problem    1
1.1 ModelSpaceandDataSpace ...................... 1 1.2 StatesofInformation .......................... 6 1.3    ForwardProblem ............................ 20 1.4    MeasurementsandAPrioriInformation . . . . . . . . . . . . . . . . 24 1.5    DefiningtheSolutionoftheInverseProblem . . . . . . . . . . . . . . 32 1.6    UsingtheSolutionoftheInverseProblem . . . . . . . . . . . . . . . 37
2    Monte Carlo Methods    41
2.1    Introduction ............................... 41 2.2    TheMovieStrategyforInverseProblems . . . . . . . . . . . . . . . . 44 2.3    SamplingMethods............................ 48 2.4    MonteCarloSolutiontoInverseProblems . . . . . . . . . . . . . . . 51 2.5    SimulatedAnnealing .......................... 54
3    The Least-Squares Criterion    57
3.1    Preamble: TheMathematicsofLinearSpaces . . . . . . . . . . . . . 57 3.2    TheLeast-SquaresProblem....................... 62 3.3    EstimatingPosteriorUncertainties ................... 70 3.4    Least-SquaresGradientandHessian .................. 75
4    Least-Absolute-Values Criterion and Minimax Criterion    81
4.1    Introduction ............................... 81 4.2    Preamble:lp-Norms........................... 82 4.3    Thelp-NormProblem.......................... 86 4.4    Thel1-NormCriterionforInverseProblems . . . . . . . . . . . . . . 89 4.5    Thel∞-NormCriterionforInverseProblems. . . . . . . . . . . . . . 96
5    Functional Inverse Problems    101
5.1    RandomFunctions............................101 5.2    SolutionofGeneralInverseProblems. . . . . . . . . . . . . . . . . .108 5.3    IntroductiontoFunctionalLeastSquares . . . . . . . . . . . . . . . . 108 5.4    Derivative and Transpose Operators in Functional Spaces . . . . . . . 119
vii
viii
Contents
6
7
Appendices
6.1    Volumetric Probability and Probability Density . . . . 6.2    Homogeneous Probability Distributions . . . . . . . . 6.3    Homogeneous Distribution for Elastic Parameters    . . 6.4    Homogeneous Distribution for Second-Rank Tensors 6.5    Central Estimators and Estimators of Dispersion . . . 6.6    GeneralizedGaussian ..........................174 6.7    Log-NormalProbabilityDensity ....................175 6.8    Chi-SquaredProbabilityDensity ....................177 6.9    MonteCarloMethodofNumericalIntegration . . . . . . . . . . . . . 179 6.10    SequentialRandomRealization.....................181 6.11    CascadedMetropolisAlgorithm.....................182 6.12 DistanceandNorm ...........................183 6.13    TheDifferentMeaningsoftheWordKernel . . . . . . . . . . . . . . 183 6.14    TransposeandAdjointofaDifferentialOperator . . . . . . . . . . . . 184 6.15    TheBayesianViewpointofBackus(1970) . . . . . . . . . . . . . . . 190 6.16 TheMethodofBackusandGilbert ...................191 6.17    DisjunctionandConjunctionofProbabilities . . . . . . . . . . . . . . 195 6.18    PartitionofDataintoSubsets ......................197 6.19    MarginalizinginLinearLeastSquares . . . . . . . . . . . . . . . . .200 6.20    RelativeInformationofTwoGaussians . . . . . . . . . . . . . . . . .201 6.21 ConvolutionofTwoGaussians .....................202 6.22    Gradient-BasedOptimizationAlgorithms. . . . . . . . . . . . . . . .203 6.23    ElementsofLinearProgramming....................223 6.24 SpacesandOperators ..........................230 6.25    UsualFunctionalSpaces.........................242 6.26    MaximumEntropyProbabilityDensity . . . . . . . . . . . . . . . . .245 6.27    TwoPropertiesoflp-Norms.......................246 6.28    DiscreteDerivativeOperator ......................247 6.29    LagrangeParameters ..........................249 6.30    MatrixIdentities.............................249 6.31 InverseofaPartitionedMatrix .....................250 6.32 NormoftheGeneralizedGaussian ...................250
Problems 253
5.5 5.6 5.7 5.8
GeneralLeast-SquaresInversion ....................133
Example: X-Ray Tomography as an Inverse Problem Example: Travel-Time Tomography    . . . . . . . . . Example: Nonlinear Inversion of Elastic Waveforms .
......... 140 . . . . . . . . . 143 . . . . . . . . . 144
159
7.1    Estimation of the Epicentral Coordinates of a Seismic Event 7.2    MeasuringtheAccelerationofGravity . . . . . . . . . . . 7.3    ElementaryApproachtoTomography. . . . . . . . . . . . 7.4    Linear Regression with Rounding Errors . . . . . . . . . . 7.5    UsualLeast-SquaresRegression. . . . . . . . . . . . . . . 7.6    Least-Squares Regression with Uncertainties in Both Axes
......253 ......256 ......259 ......266 ......269 ......273
......... 159 ......... 160 ......... 164 ......... 170 ......... 170
Contents    ix
7.7    LinearRegressionwithanOutlier....................275 7.8    Condition Number and A Posteriori Uncertainties . . . . . . . . . . . 279 7.9    ConjunctionofTwoProbabilityDistributions. . . . . . . . . . . . . . 285
7.10    Adjoint of a Covariance Operator    . 7.11    Problem7.1Revisited . . . . . . . 7.12    Problem7.3Revisited . . . . . . . 7.13    An Example of Partial Derivatives 7.14    Shapesofthelp-NormMisfitFunctions . . . . . . . . . . . . . . . .290 7.15 UsingtheSimplexMethod .......................293 7.16    Problem7.7Revisited..........................295 7.17    GeodeticAdjustmentwithOutliers ...................296
7.18    InversionofAcousticWaveforms.............. 7.19    UsingtheBackusandGilbertMethod. . . . . . . . . . . . 7.20    The Coefficients in the Backus and Gilbert Method . . . . . 7.21    The Norm Associated with the 1D Exponential Covariance 7.22    The Norm Associated with the 1D Random Walk    . . . . . 7.23    The Norm Associated with the 3D Exponential Covariance
References and References for General Reading Index
......297 ......304 ...... 308 ...... 308 ...... 311 ...... 313
317 333 Inverse Problem Theory and Methods for Model Parameter Estimation.pdf (15.32 MB, 需要: 5 个论坛币)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Estimation Parameter paramete Methods inverse Theory model Estimation problem Parameter

沙发
shushuangliu(真实交易用户) 发表于 2012-6-13 22:37:01
不错 呵呵 分享一下

藤椅
chmlx(真实交易用户) 发表于 2023-12-3 20:38:10
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-30 01:59