楼主: zst112all
2106 4

[学科前沿] Numerical Methods in Finance [推广有奖]

  • 1关注
  • 0粉丝

已卖:210份资源

本科生

92%

还不是VIP/贵宾

-

威望
0
论坛币
343 个
通用积分
0.1200
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
1582 点
帖子
64
精华
0
在线时间
148 小时
注册时间
2007-6-19
最后登录
2022-8-2

楼主
zst112all 发表于 2011-4-7 15:32:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Numerical Methods in Finance. Part A.
(2010-2011)
Paul Clifford, Sebastian Van Strien and Oleg Zaboronski
October 6, 2010
Contents
0 Preface iv
0.1 Aims, objectives, and organisation of the course. . . . . . . . . iv
1 Linear models: growth and distribution 2
1.1 Matrix computations in Matlab . . . . . . . . . . . . . . . . . 2
1.2 Non-negative matrices: modeling growth . . . . . . . . . . . . 6
1.2.1 Models with an age profile . . . . . . . . . . . . . . . . 6
1.2.2 The asymptotic behaviour depends on age-structure. . 8
1.3 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Mood fluctuations of a Markovian market . . . . . . . 12
1.3.2 Another Markov model: a random walk on a graph . . 15
1.3.3 Matlab Project for week 2. . . . . . . . . . . . . . . . . 17
2 Linear models: stability and redundancy 18
2.1 SVD or Principal Components . . . . . . . . . . . . . . . . . . 18
2.1.1 Stability of eigenvalues . . . . . . . . . . . . . . . . . . 18
2.1.2 Singular value decomposition. . . . . . . . . . . . . . . 20
2.1.3 Application of the singular value decomposition to solv-
ing linear equations . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Least square methods . . . . . . . . . . . . . . . . . . . 26
2.1.5 Further applications of SVD: Principle Component Anal-
ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.6 Pairs trade by exploiting correlations in the stock market. 27
2.2 MATLAB exercises for Week 3. . . . . . . . . . . . . . . . . . 29
2.2.1 Lesley Matrices . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Markov matrices . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Solving equations . . . . . . . . . . . . . . . . . . . . . 31
2.3 Ill-conditioned systems: general theory. . . . . . . . . . . . . . 31
2.4 Numerical computations with matrices . . . . . . . . . . . . . 34
2.5 Matlab exercises for week 4 (Linear Algebra) . . . . . . . . . . 39
2.5.1 Ill posed systems . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 MATLAB capabilities investigation: sparse matrices . . 40
2.5.3 Solving Ax = b by iteration . . . . . . . . . . . . . . . 40
3 Gambling, random walks and the CLT 42
3.1 Random variables and laws of large numbers . . . . . . . . . . 42
3.1.1 Useful probabilistic tools. . . . . . . . . . . . . . . . . 43
3.1.2 Weak law of large numbers. . . . . . . . . . . . . . . . 44
3.1.3 Strong law of large numbers. . . . . . . . . . . . . . . . 44
3.2 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 46
3.3 The simplest applications of CLT and the law of large numbers. 49
3.3.1 Monte Carlo Methods for integration . . . . . . . . . . 49
3.3.2 MATLAB exercises for Week 5. . . . . . . . . . . . . . 51
3.3.3 Analysing the value of the game. . . . . . . . . . . . . 51
3.3.4 Portfolio optimization via diversification. . . . . . . . . 54
3.4 Risk estimation and the theory of large deviations. . . . . . . 60
3.4.1 Week 6 MATLAB exercises. . . . . . . . . . . . . . . . 63
3.4.2 An example of numerical investigation of CLT and the
law of large numbers for independent Bernoulli trials. . 63
3.5 The law of large numbers for Markov chains . . . . . . . . . . 67
3.5.1 The Markov model for crude oil data. . . . . . . . . . . 68
3.6 FTSE 100: clustering, long range correlations, GARCH. . . . . 70
3.6.1 Checking the algebraic tails conjecture numerically. . . 77
3.6.2 MATLAB exercises for week 7. . . . . . . . . . . . . . 79
3.7 The Gambler’s Ruin Problem . . . . . . . . . . . . . . . . . . 81
3.7.1 Nidhi’s game. . . . . . . . . . . . . . . . . . . . . . . . 88
3.8 Cox-Ross-Rubinstein model and Black-Scholes pricing formula
for European options. . . . . . . . . . . . . . . . . . . . . . . . 89
3.8.1 The model. . . . . . . . . . . . . . . . . . . . . . . . . 89
3.8.2 Solving the discrete BS equation using binomial trees. . 93
3.8.3 The continuous limit of CRR model. . . . . . . . . . . 94
3.8.4 Matlab Exercises for Weeks 8, 9. . . . . . . . . . . . . 100
4 Numerical schemes for solving Differential and Stochastic
Differential Equations 101
4.1 Systems of ODE’s. . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.1 Existence and Uniqueness. . . . . . . . . . . . . . . . . 101
4.1.2 Autonomous linear ODE’s . . . . . . . . . . . . . . . . 103
4.1.3 Examples of non-linear differential equations . . . . . . 107
4.1.4 Numerical methods for systems of ODE’s. . . . . . . . 114
4.2 Stochastic Differential Equations . . . . . . . . . . . . . . . . 125
4.2.1 Black-Scholes SDE and Ito’s lemma. . . . . . . . . . . 125
4.2.2 The derivation of Black-Scholes pricing formula as an
exercise in Ito calculus. . . . . . . . . . . . . . . . . . . 128
4.2.3 Numerical schemes for solving SDE’s . . . . . . . . . . 129
4.2.4 Numerical example: the effect of stochastic volatility. . 133
4.2.5 Some popular models of stochastic volatility . . . . . . 137
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Numerical Finance Methods numeric Financ course Matrix growth

Numerical Methods in Finance.pdf
下载链接: https://bbs.pinggu.org/a-883125.html

1.19 MB

需要: 2 个论坛币  [购买]

沙发
liujm27(真实交易用户) 发表于 2011-4-7 15:45:01
谢了,我正需要呢!

藤椅
wutaibo(未真实交易用户) 发表于 2016-2-5 05:22:31
Thank you very much!!!

板凳
sacromento(真实交易用户) 学生认证  发表于 2016-2-6 02:58:41
thx for sharing

报纸
wutaibo(未真实交易用户) 发表于 2016-2-12 01:35:24
Thank you!!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-26 05:51