摘要翻译:
本文描述了一种基于集中/群体的混合多Agent系统的体系结构。通过使用全局agent来教导agent对给定情况的反应,研究了agent的局部目标分配问题。我们以追捕博弈的形式实现了一个测试问题,其中多Agent系统是一组捕获者Agent。如果代理无法找到解决方案,则代理向全局代理学习某些董事会位置的解决方案。捕获者智能体通过使用多层感知器神经网络进行学习。全局代理能够通过使用遗传算法来解决板的位置。讨论了Agent之间的协作和仿真结果。.
---
英文标题:
《A Study in a Hybrid Centralised-Swarm Agent Community》
---
作者:
Bradley van Aardt, Tshilidzi Marwala
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
This paper describes a systems architecture for a hybrid Centralised/Swarm based multi-agent system. The issue of local goal assignment for agents is investigated through the use of a global agent which teaches the agents responses to given situations. We implement a test problem in the form of a Pursuit game, where the Multi-Agent system is a set of captor agents. The agents learn solutions to certain board positions from the global agent if they are unable to find a solution. The captor agents learn through the use of multi-layer perceptron neural networks. The global agent is able to solve board positions through the use of a Genetic Algorithm. The cooperation between agents and the results of the simulation are discussed here. .
---
PDF链接:
https://arxiv.org/pdf/0705.2307