摘要翻译:
单像素成像是一种利用简化光学硬件和先进计算方法的间接成像技术。它为超光谱成像、偏振成像、三维成像、全息成像、光学加密和散射介质成像提供了新的解决方案。其使用的主要限制来自于相对较高的测量和重建时间。本文提出了一种基于随机选择白噪声卷积Morlet小波的采样方案,以减少所需的信号采集时间。虽然这些函数具有随机性,但它们是由Morlet小波参数局部确定的。该方法等价于对特征空间中适当选取的部分进行随机抽样,在空间域和空间频域上都能准确地映射出被测图像。我们将我们的采样协议与广泛使用的Walsh-Hadamard或noiselet函数采样进行了数值和实验比较。结果表明,与以前的方法相比有很大的改进,能够在几个百分点的低压缩率下实现单像素成像。
---
英文标题:
《Single-pixel imaging with Morlet wavelet correlated random patterns》
---
作者:
Krzysztof M. Czajkowski, Anna Pastuszczak and Rafa{\l} Koty\'nski
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
Single-pixel imaging is an indirect imaging technique which utilizes simplified optical hardware and advanced computational methods. It offers novel solutions for hyper-spectral imaging, polarimetric imaging, three-dimensional imaging, holographic imaging, optical encryption and imaging through scattering media. The main limitations for its use come from relatively high measurement and reconstruction times. In this paper we propose to reduce the required signal acquisition time by using a novel sampling scheme based on a random selection of Morlet wavelets convolved with white noise. While such functions exhibit random properties, they are locally determined by Morlet wavelet parameters. The proposed method is equivalent to random sampling of the properly selected part of the feature space, which maps the measured images accurately both in the spatial and spatial frequency domains. We compare both numerically and experimentally the image quality obtained with our sampling protocol against widely-used sampling with Walsh-Hadamard or noiselet functions. The results show considerable improvement over the former methods, enabling single-pixel imaging at low compression rates on the order of a few percent.
---
PDF链接:
https://arxiv.org/pdf/1709.07739


雷达卡



京公网安备 11010802022788号







